EAGER Collaborative Research: Towards Wireless Nano-electrostimulation of Ion Channels in Mammalian Cells

EAGER 合作研究:哺乳动物细胞离子通道的无线纳米电刺激

基本信息

  • 批准号:
    1239915
  • 负责人:
  • 金额:
    $ 3.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this exploratory research is to develop a technique for remote stimulation of mammalian cells using nanoscale electric fields. This new concept takes advantage of magnetoelectric properties of multiferroic nanoparticles which can generate local electric fields in the proximity of cell membranes when subjected to external magnetic field pulses. These fields are expected to control functions of voltage-gated ion channels, which are voltage-sensitive macromolecules, responsible for transport of Na+, K+ ions across cell membranes. To elucidate feasibility of this new approach PI will use computer simulations and thin film technology at the Advanced Materials Research Institute of the University of New Orleans to design and fabricate nanoelectrodes and patterned arrays of multiferroic particles to generate nanoscale electric fields. The response of the ion channels to the nano-electrostimulation will be measured by Co-PI in his Biophysics Laboratory at Loyola University New Orleans using modified patch-clamp technique. Since future in-vivo applications of the new method will involve use of multiferroic nanocomposites of magnetic and ferroelectric nanoparticles, The Co-PI will also devise methods of delivery of the ferroelectric nanoparticles and will determine their toxicity and binding to mammalian cells. This collaborative research will efficiently use resources and expertise in physics, materials science and biophysics available at the University of New Orleans and Loyola University New Orleans. Intellectual Merit: The proposed research is an attempt to utilize magnetoelectric properties of multiferroic nanoparticles as wireless probes to electrostimulate mammalian cells. The effects of external nanoscale electric fields on ion transport in mammalian cells have not been studied and this research will provide better understanding of fundamental functions of the cells. Although there have been extensive studies on applications of magnetic nanoparticles in biological systems, little is known about the interactions of ferroelectric nanoparticles with mammalian cells and proposed research will shed light on feasibility of biomedical applications of ferroelectric materials and their composites. New methods will be developed for intracellular and extracellular delivery of the nanoparticles, and patch-clamp technique will be modified to test responses of the ion-channels in living cells to applied magnetic fields with the frequency up to 5 kHz. The sequences of the pulses, as well as properties of the nanoparticles will be tuned to detetermine control of ion currents. Broader Impacts: The outcome of this research on is expected to have profound effect on several disciplines, such as biology, medicine, biotechnology and bionics. Successful control of ion transport using magnetic field pulses offers alternative noninvasive method to treat ion-channel related diseases, such as cystic fibrosis, diabetes, cardiac arrhythmias, neurologic and psychiatric diseases, gastrointestinal disorders, cardiovascular diseases and hypertension. Since voltage-gated ion channels are responsible for triggering and propagation of action potentials in neurons the new mechanism of stimulation of ion channels can be used to treat pain and psychiatric diseases. Ultimately, electric fields from magnetoelectric nanoparticles can be used to interface neurons with bionic devices which can remotely control their action potentials. This project will greatly benefit undergraduate and graduate students participating in this research through extensive training in modern technologies, hands on experiment experience and communication skills gained through participation in meetings and conferences that will impact their future professional careers in academia or industry.
这项探索性研究的目标是开发一种使用纳米级电场远程刺激哺乳动物细胞的技术。这种新概念利用了多铁性纳米颗粒的磁电特性,当受到外部磁场脉冲时,该多铁性纳米颗粒可以在细胞膜附近产生局部电场。 这些场被期望控制电压门控离子通道的功能,电压门控离子通道是负责Na+、K+离子跨细胞膜转运的电压敏感性大分子。为了阐明这种新方法的可行性,PI将在新奥尔良大学先进材料研究所使用计算机模拟和薄膜技术来设计和制造纳米电极和多铁性粒子的图案化阵列,以产生纳米级电场。离子通道对纳米电刺激的反应将由Co-PI在新奥尔良洛约拉大学的生物物理实验室使用改良的膜片钳技术测量。由于新方法的未来体内应用将涉及使用磁性和铁电纳米颗粒的多铁性纳米复合材料,Co-PI还将设计铁电纳米颗粒的递送方法,并将确定其毒性和与哺乳动物细胞的结合。这项合作研究将有效地利用新奥尔良大学和新奥尔良洛约拉大学在物理学,材料科学和生物物理学方面的资源和专业知识。 智力优势:该研究试图利用多铁性纳米粒子的磁电特性作为无线探针来电刺激哺乳动物细胞。尚未研究外部纳米电场对哺乳动物细胞中离子转运的影响,这项研究将更好地了解细胞的基本功能。虽然已经有广泛的研究磁性纳米粒子在生物系统中的应用,很少有人知道铁电纳米粒子与哺乳动物细胞的相互作用,拟议的研究将揭示铁电材料及其复合材料的生物医学应用的可行性。将开发用于纳米颗粒的细胞内和细胞外递送的新方法,并且将修改膜片钳技术以测试活细胞中离子通道对频率高达5 kHz的施加磁场的响应。脉冲的顺序以及纳米颗粒的性质将被调整以确定离子电流的控制。更广泛的影响:这项研究的成果有望对生物学、医学、生物技术和仿生学等学科产生深远的影响。利用磁场脉冲成功地控制离子传输提供了治疗离子通道相关疾病的替代非侵入性方法,例如囊性纤维化、糖尿病、心律失常、神经和精神疾病、胃肠道疾病、心血管疾病和高血压。由于电压门控离子通道负责神经元中动作电位的触发和传播,因此刺激离子通道的新机制可用于治疗疼痛和精神疾病。最终,磁电纳米颗粒的电场可用于将神经元与仿生设备连接,从而远程控制其动作电位。 该项目将大大有利于本科生和研究生参与这项研究,通过广泛的现代技术培训,动手实验经验和沟通技巧,通过参加会议和会议,将影响他们未来的职业生涯在学术界或工业界获得。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Armin Kargol其他文献

The infinite time limit for the time-dependent Born-Oppenheimer approximation
Correlation Relation for the Membrane Transport ParametersLp, σ, and ω
  • DOI:
    10.1023/a:1005013401487
  • 发表时间:
    1997-12-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Armin Kargol;Marian Kargol;StanisŁaw Przestalski
  • 通讯作者:
    StanisŁaw Przestalski

Armin Kargol的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 3.81万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 3.81万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 3.81万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 3.81万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 3.81万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 3.81万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 3.81万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 3.81万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 3.81万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 3.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了