Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework

预测区域入侵动态过程 (PRIDE) - 开发跨尺度、基于功能特征的建模框架

基本信息

  • 批准号:
    1241932
  • 负责人:
  • 金额:
    $ 71.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-02-15 至 2017-01-31
  • 项目状态:
    已结题

项目摘要

Invasions of exotic species pose major threats to many ecosystems and result in significant ecosystem degradation and economic loss. Research on exotic invasions has been a major topic in the last two decades and much knowledge has been gained from research done on small plots. However, current understanding of the long-term invasion process at regional to continental scales is limited, in part because long-term and large-scale empirical information is lacking. This project uses a new research framework constructed using functional traits (for example, life history information) that includes all three major invasion components: the invader, the recipient system, and the drivers that facilitate the invader, all examined across scales of both time and space. The overarching goal of this exploratory project is to establish a regional network of scientists and practitioners to develop a regional scale predictive model of invasion dynamics under this new framework. The specific aims of the project are (1) to develop an interdisciplinary team for constructing a regional to continental scale invasive modeling framework, ensuring that it is also relevant to invasion management, (2) to develop a comprehensive regional database that includes invader functional traits and current distributions, recipient system characteristics, and multi-dimensional invasion driver characteristics, and (3) to develop a new, multi-scale invasion modeling framework based on functional traits for an invader, an invasion driver, and a recipient system and use the model to explore cross-scale interactions. The outcomes of the proposed project will position the research team to develop a new generation of accurate predictive models for regional scale invasion forecasting, which will assist researchers and natural resource managers to examine what-if scenarios in the short term (5-10 years) and long term (50-100 years). The new research framework should also be easily applied to invasive species study in other regions and on other continents. In addition, the conceptual framework can be used as a mechanism to advance the field of invasion ecology by formulating new invasion theories and unifying existing hypotheses. Results of the proposed research will also have direct societal benefits. Applications to invasion management will help prevent and mitigate economic and ecological damages caused by invasive species. The project will have high impact on education as well. Two postdoctoral fellows and two PhD Fellows will be supported to conduct related research, along with six undergraduate scholars and four interns. Emphasis in recruiting will be on underrepresented and female students.
外来物种的入侵对许多生态系统构成重大威胁,导致生态系统严重退化和经济损失。 在过去的二十年里,外来入侵的研究一直是一个重要的课题,许多知识都是从小块土地上进行的研究中获得的。 然而,目前对区域到大陆尺度的长期入侵过程的了解是有限的,部分原因是缺乏长期和大规模的经验信息。 该项目使用了一个新的研究框架,该框架使用功能特征(例如,生活史信息)构建,包括所有三个主要的入侵组件:入侵者,接受者系统和促进入侵者的驱动程序,所有这些都在时间和空间的尺度上进行了检查。 这个探索性项目的总体目标是建立一个科学家和从业人员的区域网络,在这个新框架下开发一个区域规模的入侵动态预测模型。 该项目的具体目标是(1)建立一个跨学科的团队,以构建一个区域到大陆规模的入侵建模框架,确保它也与入侵管理相关,(2)开发一个全面的区域数据库,包括入侵者的功能特征和当前分布,受体系统特征和多维入侵驱动因素特征,以及(3)开发一个新的,基于入侵者、入侵驱动器和接收者系统的功能特性的多尺度入侵建模框架,并使用该模型来探索跨尺度交互。拟议项目的成果将使研究团队能够开发新一代区域规模入侵预测的准确预测模型,这将有助于研究人员和自然资源管理人员研究短期(5-10年)和长期(50-100年)的假设情景。 新的研究框架也应该很容易应用于其他地区和其他大陆的入侵物种研究。 此外,概念框架可以作为一种机制,通过制定新的入侵理论和统一现有的假设,推进入侵生态学领域。 研究成果也将产生直接的社会效益。应用于入侵管理将有助于预防和减轻入侵物种造成的经济和生态破坏。 该项目也将对教育产生重大影响。将支持两名博士后研究员和两名博士研究员进行相关研究,沿着六名本科学者和四名实习生。招聘的重点将是代表性不足的学生和女学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Songlin Fei其他文献

NEON-SD: A 30-m Structural Diversity Product Derived from the NEON Discrete-Return LiDAR Point Cloud
霓虹-SD:一种源自霓虹离散返回激光雷达点云的 30 米结构多样性产品
  • DOI:
    10.1038/s41597-024-04018-0
  • 发表时间:
    2024-10-29
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Jianmin Wang;Dennis H. Choi;Elizabeth LaRue;Jeff W. Atkins;Jane R. Foster;Jaclyn H. Matthes;Robert T. Fahey;Songlin Fei;Brady S. Hardiman
  • 通讯作者:
    Brady S. Hardiman
The impacts of training data spatial resolution on deep learning in remote sensing
训练数据空间分辨率对遥感深度学习的影响
  • DOI:
    10.1016/j.srs.2024.100185
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    5.200
  • 作者:
    Christopher Ardohain;Songlin Fei
  • 通讯作者:
    Songlin Fei
Invasive species identification from high-resolution 4-band multispectral imagery
  • DOI:
    10.1007/s10530-024-03397-0
  • 发表时间:
    2024-07-18
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Christopher Ardohain;Cameron Wingren;Bina Thapa;Songlin Fei
  • 通讯作者:
    Songlin Fei
Forest plant invasions in the eastern United States: evidence of invasion debt in the wildland-urban interface
  • DOI:
    10.1007/s10980-024-01985-y
  • 发表时间:
    2024-11-20
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Kevin M. Potter;Kurt H. Riitters;Basil V. Iannone;Qinfeng Guo;Songlin Fei
  • 通讯作者:
    Songlin Fei
Forest feature LiDAR SLAM (Fsup2/sup-LSLAM) for backpack systems
用于背包系统的森林特征激光雷达 SLAM(F²-LSLAM)

Songlin Fei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Songlin Fei', 18)}}的其他基金

Collaborative Research: MRA: Elucidating Plant and Mycorrhizal Fungal Relationships and Consequences across Space and Time
合作研究:MRA:阐明植物和菌根真菌的关系以及跨空间和时间的后果
  • 批准号:
    2106103
  • 财政年份:
    2021
  • 资助金额:
    $ 71.52万
  • 项目类别:
    Standard Grant
WORKSHOP: EXPLORING NEW DIMENSIONS OF FOREST ECOSYSTEMS WITH STRUCTURAL DIVERSITY
研讨会:探索具有结构多样性的森林生态系统的新维度
  • 批准号:
    1924942
  • 财政年份:
    2019
  • 资助金额:
    $ 71.52万
  • 项目类别:
    Standard Grant
MSB-FRA Modeling Invasion Dynamics Across Scales (MIDAS)
MSB-FRA 跨尺度入侵动力学建模 (MIDAS)
  • 批准号:
    1638702
  • 财政年份:
    2016
  • 资助金额:
    $ 71.52万
  • 项目类别:
    Standard Grant

相似海外基金

Cultivating digital music making in regional Australia
培育澳大利亚乡村地区的数字音乐制作
  • 批准号:
    DP240100680
  • 财政年份:
    2024
  • 资助金额:
    $ 71.52万
  • 项目类别:
    Discovery Projects
The International Political Thought of Women’s Regional Networks
妇女区域网络的国际政治思想
  • 批准号:
    DE240101244
  • 财政年份:
    2024
  • 资助金额:
    $ 71.52万
  • 项目类别:
    Discovery Early Career Researcher Award
Regional differences in itch transmission
瘙痒传播的区域差异
  • 批准号:
    2334697
  • 财政年份:
    2024
  • 资助金额:
    $ 71.52万
  • 项目类别:
    Continuing Grant
REGENYSYS: Designing regenerative regional living systems - enabling a circular bioeconomy of wellbeing in the Thames Estuary
REGENYSYS:设计再生区域生命系统 - 实现泰晤士河口福祉的循环生物经济
  • 批准号:
    ES/Z502819/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.52万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track K: Spatially Resolved Solutions for Field to Regional Irrigation Water Management to Promote Equitable Sharing of Limited Water Resources
NSF 融合加速器轨道 K:田间到区域灌溉用水管理的空间解决方案,以促进有限水资源的公平共享
  • 批准号:
    2344487
  • 财政年份:
    2024
  • 资助金额:
    $ 71.52万
  • 项目类别:
    Standard Grant
Conference: Southern Regional Number Theory Conference
会议:南方区域数论会议
  • 批准号:
    2341365
  • 财政年份:
    2024
  • 资助金额:
    $ 71.52万
  • 项目类别:
    Standard Grant
CC* Regional Networking: Connecting Colorado's Western Slope Small Institutions of Higher Education to the Front Range GigaPoP Regional R&E Infrastructure
CC* 区域网络:将科罗拉多州西坡小型高等教育机构与前沿 GigaPoP 区域 R 连接起来
  • 批准号:
    2346635
  • 财政年份:
    2024
  • 资助金额:
    $ 71.52万
  • 项目类别:
    Standard Grant
CC* Regional Computing: The California State University System Technology Infrastructure for Data Exploration
CC* 区域计算:加州州立大学数据探索系统技术基础设施
  • 批准号:
    2346701
  • 财政年份:
    2024
  • 资助金额:
    $ 71.52万
  • 项目类别:
    Standard Grant
CC* Regional Computing: CENVAL-ARC: Central Valley Accessible Research and Computational Hub
CC* 区域计算:CENVAL-ARC:中央谷无障碍研究和计算中心
  • 批准号:
    2346744
  • 财政年份:
    2024
  • 资助金额:
    $ 71.52万
  • 项目类别:
    Standard Grant
The Political Economy of Water in the MENA Region: a Cross-Regional Assessment
中东和北非地区的水政治经济学:跨区域评估
  • 批准号:
    EP/Y032993/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.52万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了