An Iterated Homogenization Method to Study Cavitation in Soft Solids
研究软固体空化的迭代均化方法
基本信息
- 批准号:1242089
- 负责人:
- 金额:$ 6.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-20 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lopez-PamiesDMS-1009503 Experimental evidence has shown that loading conditions withsufficiently large triaxialities can induce the sudden appearanceof internal cavities within elastomeric (and other soft) solids. The occurrence of such instabilities, commonly referred to ascavitation, can be attributed to the growth of pre-existingdefects into finite sizes. Because of its close connection withmaterial failure initiation, the phenomenon of cavitation hasreceived much attention from the materials and mechanicscommunities. Cavitation has also been a subject of interest inthe mathematical community because its modeling has prompted thedevelopment of techniques to deal with a broad class ofnon-convex variational problems. While in recent yearsconsiderable progress has been made via energy minimizationmethods to establish existence results, fundamental problemsregarding the quantitative prediction of the occurrence ofcavitation in real material systems remain largely unresolved. In this project, the principal investigator develops a novelframework to study cavitation that: (i) is applicable to largeclasses of nonlinear elastic solids of practical interest, (ii)allows for 3D general loading conditions with arbitrarytriaxiality, (iii) incorporates direct information on the initialshape, spatial distribution, and mechanical properties of theunderlying defects at which cavitation can initiate, and (iv) is,at the same time, computationally tractable. This isaccomplished by means of an innovative iterated homogenizationmethod that allows for the construction of exact solutions forthe mechanical response of nonlinear elastic materials containingrandom distributions of initially infinitesimal cavities (ordefects). These include solutions for the change in size of theunderlying cavities as a function of the applied loadingconditions, from which the onset of cavitation can be determined. In spite of its generality, the analysis of the proposedformulation reduces to the study of tractable Hamilton-Jacobiequations in which the initial size of the cavities plays therole of time and the applied load plays the role of space. This project makes available a fresh methodology radicallydifferent from existing approaches to investigate the influenceof defects in solids. This is a core topic in mechanics, ofgreat importance for understanding and predicting the failure ofreal-world materials. More generally, the project aims todevelop analytical techniques that link the macroscopicproperties of soft heterogeneous materials directly to theirmicroscopic properties and underlying microstructures, a centralissue in many fields of modern science. Beyond putting forwardfundamental understanding of how microscopic behavior influencesmacroscopic behavior, these techniques provide engineers andscientists with mathematical tools to characterize and predictthe mechanical response and failure of a broad spectrum of softcomposite materials, including elastomeric composites (e.g.,filled elastomers) and biological tissues (e.g., arterial walls).
Lopez-PamiesDMS-1009503实验证据表明,三轴度足够大的加载条件会导致弹性(和其他软)固体中突然出现内部空洞。这种不稳定性的发生,通常被称为空化,可以归因于预先存在的缺陷增长到有限大小。由于空化现象与材料破坏的发生密切相关,因而受到了材料界和机械界的广泛关注。空化也一直是数学界感兴趣的主题,因为它的建模促进了处理一类广泛的非凸变分问题的技术的发展。虽然近年来通过能量最小化方法来确定存在结果已经取得了相当大的进展,但关于实际材料系统中空化发生的定量预测的基本问题仍然在很大程度上尚未解决。在这个项目中,首席研究人员开发了一个新的框架来研究空化:(I)适用于具有实际意义的大类非线性弹性固体,(Ii)允许具有任意三轴性的3D一般加载条件,(Iii)包括关于空化可能引发的潜在缺陷的初始形状、空间分布和力学性质的直接信息,以及(Iv)同时计算容易。这是通过一种创新的迭代均匀化方法来实现的,该方法允许构造包含初始无限小空洞(或缺陷)的随机分布的非线性弹性材料的机械响应的精确解。其中包括作为外加载荷条件的函数的下层空穴大小变化的解,由此可以确定空化的开始。尽管它具有一般性,但对所提出的公式的分析归结为研究可处理的哈密顿-雅可比方程,在该方程中,空腔的初始尺寸起时间作用,外加载荷起空间作用。这个项目提供了一种与现有方法截然不同的新方法来研究固体中缺陷的影响。这是力学中的一个核心问题,对于理解和预测真实世界材料的失效具有重要意义。更广泛地说,该项目旨在开发分析技术,将软质非均质材料的宏观性质与其微观性质和潜在的微观结构直接联系起来,这是现代科学许多领域的中心问题。除了提出微观行为如何影响宏观行为的基本理解外,这些技术还为工程师和科学家提供了数学工具来表征和预测广泛的软复合材料的机械响应和失效,包括弹性复合材料(例如填充的弹性体)和生物组织(例如动脉壁)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oscar Lopez-Pamies其他文献
The nonlinear elastic deformation of liquid inclusions embedded in elastomers
嵌入弹性体中的液态夹杂物的非线性弹性变形
- DOI:
10.1016/j.jmps.2025.106126 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:6.000
- 作者:
Oluwadara Moronkeji;Fabio Sozio;Kamalendu Ghosh;Amira Meddeb;Amirhossein Farahani;Zoubeida Ounaies;Ioannis Chasiotis;Oscar Lopez-Pamies - 通讯作者:
Oscar Lopez-Pamies
Classical variational phase-field models cannot predict fracture nucleation
- DOI:
10.1016/j.cma.2024.117520 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Oscar Lopez-Pamies;John E. Dolbow;Gilles A. Francfort;Christopher J. Larsen - 通讯作者:
Christopher J. Larsen
The poker-chip experiments of synthetic elastomers explained
合成弹性体的筹码实验解释
- DOI:
10.1016/j.jmps.2024.105683 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:6.000
- 作者:
Farhad Kamarei;Aditya Kumar;Oscar Lopez-Pamies - 通讯作者:
Oscar Lopez-Pamies
Liquid Filled Elastomers: From Linearization to Elastic Enhancement
- DOI:
10.1007/s00205-024-02064-x - 发表时间:
2024-12-18 - 期刊:
- 影响因子:2.400
- 作者:
Juan Casado-Díaz;Gilles A. Francfort;Oscar Lopez-Pamies;Maria Giovanna Mora - 通讯作者:
Maria Giovanna Mora
Oscar Lopez-Pamies的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oscar Lopez-Pamies', 18)}}的其他基金
Collaborative Research: A Unified Theory of Crack Nucleation and Growth for Materials Subjected to Repetitive Surface Acoustic Waves and Dynamic Impacts
合作研究:重复表面声波和动态冲击下材料裂纹成核和扩展的统一理论
- 批准号:
2132528 - 财政年份:2021
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
Collaborative Research: Fracture and Healing of Elastomers: An Experimental and Theoretical Investigation at High Spatiotemporal Resolution
合作研究:弹性体的断裂和愈合:高时空分辨率的实验和理论研究
- 批准号:
1901583 - 财政年份:2019
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
DMREF: Collaborative Research:Elastomers Filled with Electro- and Magneto-Active Fluid Inclusions: A New Paradigm for Soft Active Materials
DMREF:合作研究:填充电活性和磁活性流体包裹体的弹性体:软活性材料的新范例
- 批准号:
1922371 - 财政年份:2019
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Enhancement of the Electromechanical Properties of Soft Nano-Particulate Composites via Interphases
合作研究:通过界面极大增强软纳米颗粒复合材料的机电性能
- 批准号:
1661853 - 财政年份:2017
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
Collaborative Research: Fracture in Soft Organic Solids --- The Variational View
合作研究:软有机固体的断裂——变分观
- 批准号:
1615661 - 财政年份:2016
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Processing and Characterization of Soft Active Nanoparticulate Composites
EAGER/合作研究:软活性纳米颗粒复合材料的加工和表征
- 批准号:
1349535 - 财政年份:2013
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
Collaborative Research: Damage in Soft Solids: Elasticity vs Fracture
合作研究:软固体损伤:弹性与断裂
- 批准号:
1235352 - 财政年份:2012
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
CAREER: Novel Homogenization Approaches to Study the Electromechanical Behavior and Stability of Soft Electrostrictive Composites
职业:研究软电致伸缩复合材料机电行为和稳定性的新型均质化方法
- 批准号:
1055528 - 财政年份:2011
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
CAREER: Novel Homogenization Approaches to Study the Electromechanical Behavior and Stability of Soft Electrostrictive Composites
职业:研究软电致伸缩复合材料机电行为和稳定性的新型均质化方法
- 批准号:
1219336 - 财政年份:2011
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
相似海外基金
Optimal design method for high-performance polishing pads based on the homogenization method
基于均化法的高性能抛光垫优化设计方法
- 批准号:
20K14636 - 财政年份:2020
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Construction of Structural Design Method for Acoustic Metamaterials Considering Acoustic and Structural Coupled Effects Based on the Homogenization Method
基于均质化方法构建考虑声学与结构耦合效应的声学超材料结构设计方法
- 批准号:
18H01356 - 财政年份:2018
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optimization method for sound-absorbing poroelastic media by using homogenization method and topology optimization method
均质化和拓扑优化法吸声多孔弹性介质的优化方法
- 批准号:
17K06238 - 财政年份:2017
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of design method for mechanical properties of microcellular foam material by homogenization of microstructure
基于微观结构均匀化的微孔泡沫材料力学性能设计方法的建立
- 批准号:
15K05671 - 财政年份:2015
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of new homogenization method for efficient electromagnetic analysis and its application
高效电磁分析均化新方法的开发及其应用
- 批准号:
26420233 - 财政年份:2014
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Micro structure modeling and its effect to sound absorption by homogenization method
均化法微观结构建模及其对吸声的影响
- 批准号:
26420590 - 财政年份:2014
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural optimization of multiscale problems based on numerical homogenization using FE2 method
使用FE2方法基于数值均质化的多尺度问题的结构优化
- 批准号:
229913733 - 财政年份:2013
- 资助金额:
$ 6.8万 - 项目类别:
Research Grants
Multi-scale non-destructive simulation using an inverse homogenization method
使用逆均质化方法的多尺度无损模拟
- 批准号:
24360175 - 财政年份:2012
- 资助金额:
$ 6.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An Iterated Homogenization Method to Study Cavitation in Soft Solids
研究软固体空化的迭代均化方法
- 批准号:
1009503 - 财政年份:2010
- 资助金额:
$ 6.8万 - 项目类别:
Standard Grant
Coarse mesh transport method without homogenization
无均质化的粗网输送方式
- 批准号:
304831-2004 - 财政年份:2005
- 资助金额:
$ 6.8万 - 项目类别:
Postgraduate Scholarships - Doctoral