Brittle Fracture of Dissipative Solids
耗散固体的脆性断裂
基本信息
- 批准号:2308169
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Because of its pervasiveness and high-stakes impact on the mechanical performance of structures made of inorganic and live matter alike, such as bridges, airplanes, bones, and ligaments, fractures have attracted the attention of humans, researchers and laymen alike, for centuries. Arguably, it is in the past 25 years of this long and rich history that most progress has been made in the quest for a complete mathematical formulation of fractures. This has been made possible by a pivotal idea, to wit, the casting of the phenomenon of fracture as a competition between energies: the energy required to deform the structure and the energy required to create a crack in the structure. Critically, this progress has been restricted to the elementary case of brittle fracture in elastic solids, that is, materials that respond in one of two ways to mechanical forces: they either deform elastically or create new surface, i.e., they fracture. Yet, while within certain restricted conditions some materials may be safely idealized as brittle elastic solids, as in the case of glass at room temperature, all materials dissipate energy when they deform, primarily by viscous or plastic deformation, or both, as for rubber and aluminum. In this context, based on a universal energy competition recently discovered by the investigator, this project aims to develop a rigorous mathematical formulation to describe fracture in dissipative solids at large. The project will provide interdisciplinary research training opportunities for graduate students. The project has three main objectives: 1) to develop a mathematically well-posed time-discrete formulation of brittle fracture evolution in a large class of dissipative solids subjected to isothermal quasistatic mechanical loading; 2) to develop a phase-field regularization of the time-discrete formulation and establish its convergence to the sharp limit; and 3) to numerically implement the developed phase-field formulation and validate its predictions against representative experiments on different types of solids. From a fundamental standpoint, the project seeks to provide a first step towards a mathematically well-posed universal formulation of fractures in any type of solid subjected to quasistatic mechanical loading. In other words, to provide a first step in establishing that the so-called brittle Griffith fracture is a universal description of fracture in any type of solid. From an applications standpoint, a tractable computational tool will be developed with the capability to describe, explain, and predict the nucleation of a fracture from large pre-existing cracks, as well as the propagation of fractures in structures made of a large class of dissipative solids under arbitrary quasistatic loading. Such a general quantitative tool would provide exceptional insight into a broad spectrum of phenomena dominated by fracture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于它的普遍性和高风险的影响,对结构的机械性能的无机和活的物质一样,如桥梁,飞机,骨骼和韧带,骨折引起了人们的注意,研究人员和外行一样,几个世纪以来。可以说,正是在这漫长而丰富的历史的过去25年中,在寻求完整的裂缝数学公式方面取得了最大的进展。这是通过一个关键的想法而实现的,即,将断裂现象视为能量之间的竞争:使结构变形所需的能量和在结构中产生裂纹所需的能量。重要的是,这一进展仅限于弹性固体中脆性断裂的基本情况,即以两种方式之一响应机械力的材料:它们要么弹性变形,要么产生新的表面,即,它们断裂。然而,虽然在某些限制条件下,某些材料可以安全地理想化为脆性弹性固体,如玻璃在室温下的情况,但所有材料在变形时都会耗散能量,主要是通过粘性或塑性变形,或两者兼而有之,如橡胶和铝。在这种情况下,基于研究人员最近发现的普遍能量竞争,该项目旨在开发一个严格的数学公式来描述耗散固体中的断裂。该项目将为研究生提供跨学科研究培训机会。该项目有三个主要目标:1)发展一个数学适定的时间离散公式,描述在等温准静态机械载荷作用下的大类耗散固体的脆性断裂演化:2)发展时间离散公式的相场正则化,并建立其收敛到尖锐极限;以及3)数值地实现所开发的相场公式,并针对不同类型固体的代表性实验来验证其预测。从基本的角度来看,该项目旨在提供第一步,在任何类型的固体受到准静态机械载荷的数学适定的通用公式的骨折。换句话说,提供了第一步,建立所谓的脆性格里菲斯断裂是任何类型固体断裂的通用描述。从应用的角度来看,一个易于处理的计算工具将开发的能力来描述,解释和预测从大的预先存在的裂纹的断裂成核,以及在任意准静态载荷下的一大类耗散固体的结构中的断裂的传播。这样一个通用的定量工具将提供特殊的洞察力到一个广泛的现象占主导地位的fraction.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oscar Lopez-Pamies其他文献
The nonlinear elastic deformation of liquid inclusions embedded in elastomers
嵌入弹性体中的液态夹杂物的非线性弹性变形
- DOI:
10.1016/j.jmps.2025.106126 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:6.000
- 作者:
Oluwadara Moronkeji;Fabio Sozio;Kamalendu Ghosh;Amira Meddeb;Amirhossein Farahani;Zoubeida Ounaies;Ioannis Chasiotis;Oscar Lopez-Pamies - 通讯作者:
Oscar Lopez-Pamies
Classical variational phase-field models cannot predict fracture nucleation
- DOI:
10.1016/j.cma.2024.117520 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Oscar Lopez-Pamies;John E. Dolbow;Gilles A. Francfort;Christopher J. Larsen - 通讯作者:
Christopher J. Larsen
The poker-chip experiments of synthetic elastomers explained
合成弹性体的筹码实验解释
- DOI:
10.1016/j.jmps.2024.105683 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:6.000
- 作者:
Farhad Kamarei;Aditya Kumar;Oscar Lopez-Pamies - 通讯作者:
Oscar Lopez-Pamies
Liquid Filled Elastomers: From Linearization to Elastic Enhancement
- DOI:
10.1007/s00205-024-02064-x - 发表时间:
2024-12-18 - 期刊:
- 影响因子:2.400
- 作者:
Juan Casado-Díaz;Gilles A. Francfort;Oscar Lopez-Pamies;Maria Giovanna Mora - 通讯作者:
Maria Giovanna Mora
Oscar Lopez-Pamies的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oscar Lopez-Pamies', 18)}}的其他基金
Collaborative Research: A Unified Theory of Crack Nucleation and Growth for Materials Subjected to Repetitive Surface Acoustic Waves and Dynamic Impacts
合作研究:重复表面声波和动态冲击下材料裂纹成核和扩展的统一理论
- 批准号:
2132528 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
DMREF: Collaborative Research:Elastomers Filled with Electro- and Magneto-Active Fluid Inclusions: A New Paradigm for Soft Active Materials
DMREF:合作研究:填充电活性和磁活性流体包裹体的弹性体:软活性材料的新范例
- 批准号:
1922371 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Fracture and Healing of Elastomers: An Experimental and Theoretical Investigation at High Spatiotemporal Resolution
合作研究:弹性体的断裂和愈合:高时空分辨率的实验和理论研究
- 批准号:
1901583 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Enhancement of the Electromechanical Properties of Soft Nano-Particulate Composites via Interphases
合作研究:通过界面极大增强软纳米颗粒复合材料的机电性能
- 批准号:
1661853 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Fracture in Soft Organic Solids --- The Variational View
合作研究:软有机固体的断裂——变分观
- 批准号:
1615661 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Processing and Characterization of Soft Active Nanoparticulate Composites
EAGER/合作研究:软活性纳米颗粒复合材料的加工和表征
- 批准号:
1349535 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
An Iterated Homogenization Method to Study Cavitation in Soft Solids
研究软固体空化的迭代均化方法
- 批准号:
1242089 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Damage in Soft Solids: Elasticity vs Fracture
合作研究:软固体损伤:弹性与断裂
- 批准号:
1235352 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Novel Homogenization Approaches to Study the Electromechanical Behavior and Stability of Soft Electrostrictive Composites
职业:研究软电致伸缩复合材料机电行为和稳定性的新型均质化方法
- 批准号:
1055528 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Novel Homogenization Approaches to Study the Electromechanical Behavior and Stability of Soft Electrostrictive Composites
职业:研究软电致伸缩复合材料机电行为和稳定性的新型均质化方法
- 批准号:
1219336 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
- 批准号:
EP/Y002474/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
I-Corps: Translation Potential of Mechanically Compliant Fracture Fixation Plates for Long Bone Fractures
I-Corps:用于长骨骨折的机械顺应性骨折固定板的平移潜力
- 批准号:
2410029 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Understanding Dike Propagation Through Comparison of High-fidelity Coupled Fracture and Fluid Flow Models and Field Observations
通过比较高保真耦合裂缝和流体流动模型以及现场观测来了解堤坝的扩展
- 批准号:
2333837 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
The Open fracture National Evaluation (ONE) Study - South Africa: Improving outcomes in the care of open fractures in low resource settings
开放性骨折国家评估 (ONE) 研究 - 南非:改善资源匮乏地区开放性骨折的护理效果
- 批准号:
MR/Y00955X/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Fellowship
Conference: An AmeriMech Symposium on Fracture of Soft Materials; Austin, Texas; 12-16 May 2024
会议:AmeriMech 软材料断裂研讨会;
- 批准号:
2419299 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: To roll, flow, or fracture - that is the question: Investigating the mechanisms behind friction and the stability of faults
博士后奖学金:EAR-PF:滚动、流动或断裂 - 这就是问题:研究摩擦和断层稳定性背后的机制
- 批准号:
2305630 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Fellowship Award
Influence of Fracture Heterogeneity on Rock Deformation and Failure (INFORM): A Mechanics-based Multi-scale Framework for Radioactive Waste Disposal
裂缝非均质性对岩石变形和破坏的影响(INFORM):基于力学的放射性废物处置多尺度框架
- 批准号:
EP/W031221/2 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
CAREER: Osteocyte Regulation of Bone Tissue Fracture Resistance
职业:骨细胞对骨组织骨折抵抗力的调节
- 批准号:
2340823 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Energy dissipation characterisation in dynamic brittle fracture
动态脆性断裂的能量耗散表征
- 批准号:
DP230100749 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Discovery Projects