RTG: Parameter Estimation Methodologies for Mechanistic Biological Models

RTG:机械生物模型的参数估计方法

基本信息

  • 批准号:
    1246991
  • 负责人:
  • 金额:
    $ 250万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

This Research Training Group (RTG) grant will train undergraduate students, graduate students and postdoctoral researchers, in statistical and inverse problem methodologies applied to mathematical models for biological systems. The research component of the RTG will revolve around a number of projects that represent different disciplinary applications of modeling and development of parameter estimation methodologies in the biological sciences. Each project will involve at least four RTG participants, including faculty, students and/or postdoctoral researchers. Some projects will focus more on development of new methodologies, while others aim more at utilizing these methodologies in a particular biological setting. Important cross-cutting themes will include parameter estimation and parameter identifiability, model selection, model robustness, uncertainty quantification and model-based experimental design. Students will receive preparation for research activities in this area through a number of supporting courses, the majority of which will be offered at the graduate level, but will be accessible to advanced undergraduates. Interdisciplinarity and team-working skills will be emphasized and developed through careful mentoring and using a number of activities, such as regular research presentations, both within and between the project groups, and journal clubs. Professional development sessions will help prepare participants for current and future careers in interdisciplinary environments both inside and outside of academia. These will be offered at various levels, designed to cater for the needs of the different participants, in some cases focusing on issues unique to scientists working in the biological realm. An annual RTG workshop, including external speakers, will showcase participants' accomplishments and give opportunity to reflect on the successful (and less successful) aspects of the year's research and training activities. In alternate years, the workshop will be expanded to include a week-long lecture, tutorial and laboratory course, providing a condensed presentation of chosen aspects of the RTG curriculum to external participants, primarily advanced undergraduates and early-stage graduate students.Ever increasing amounts of biological data are being collected, at a range of scales from the molecular and cellular through to the population and ecosystem. Mechanistic mathematical models are increasingly being used as a way of making sense of this data, providing important insights into the workings of biological systems. The success of this enterprise not only requires development and analysis of biologically appropriate models but confrontation of these models with biological data. This, in turn requires development of methodologies that allow this confrontation to occur, including practical methods that allow researchers to analyze biological data using mechanistic models. The main objective of this RTG is to develop training and research activities that will train cohorts of mathematical scientists with strengths in both applied mathematics and statistics who will have the interdisciplinary skills to work effectively with biologists, preparing them for the challenges and opportunities of the scientific workplace of the 21st century.
这项研究培训小组(RTG)的资助将培训本科生、研究生和博士后研究人员,学习应用于生物系统数学模型的统计和逆问题方法。研究小组的研究部分将围绕若干项目展开,这些项目代表了生物科学中参数估计方法的建模和开发的不同学科应用。每个项目将涉及至少四名RTG参与者,包括教师、学生和/或博士后研究人员。一些项目将更侧重于开发新的方法,而另一些项目则更多地着眼于在特定的生物学环境中利用这些方法。重要的交叉主题将包括参数估计和参数可辨识性、模型选择、模型稳健性、不确定性量化和基于模型的实验设计。学生将通过一些辅助课程为这一领域的研究活动做准备,其中大部分课程将在研究生水平上提供,但将向高级本科生开放。将通过认真指导和利用一些活动,如在项目小组内部和之间的定期研究报告,以及期刊俱乐部,来强调和发展跨学科和团队合作技能。专业发展课程将帮助学员在学术界内外的跨学科环境中为当前和未来的职业生涯做好准备。这些课程将在不同的层次上提供,旨在满足不同参与者的需求,在某些情况下,重点是在生物领域工作的科学家所特有的问题。一年一度的RTG讲习班,包括外部发言者,将展示与会者的成就,并提供机会反思国际年研究和培训活动的成功(和不太成功)方面。每隔一年,工作坊将扩大到包括为期一周的讲座、教程和实验室课程,向外部参与者,主要是高级本科生和早期研究生,提供RTG课程选定方面的简要介绍。正在收集越来越多的生物学数据,从分子和细胞到种群和生态系统。机械性的数学模型越来越多地被用作理解这些数据的一种方式,为生物系统的工作提供了重要的见解。这项事业的成功不仅需要开发和分析适合生物的模型,而且需要将这些模型与生物数据进行对抗。这反过来需要开发允许这种对抗发生的方法,包括允许研究人员使用机械模型分析生物数据的实用方法。这个RTG的主要目标是开展培训和研究活动,培训一批在应用数学和统计学方面都有优势的数学科学家,他们将拥有与生物学家有效合作的跨学科技能,使他们为迎接21世纪科学工作的挑战和机遇做好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alun Lloyd其他文献

Alun Lloyd的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alun Lloyd', 18)}}的其他基金

Collaborative Research: IHBEM: Three-way coupling of water, behavior, and disease in the dynamics of mosquito-borne disease systems
合作研究:IHBEM:蚊媒疾病系统动力学中水、行为和疾病的三向耦合
  • 批准号:
    2327815
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant

相似海外基金

Development of cell lineage tracing methods using parameter estimation of diffusion Wright-Fisher models
使用扩散 Wright-Fisher 模型参数估计开发细胞谱系追踪方法
  • 批准号:
    23K11299
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical Reconstruction of Highly Undersampled DCE MRI with Constrained Optimization for Parameter Estimation
具有参数估计约束优化的高度欠采样 DCE MRI 统计重建
  • 批准号:
    569544-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 250万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Parameter Estimation for Non-Gaussian Model-Based Clustering with High-Dimensional Data
基于非高斯模型的高维数据聚类参数估计
  • 批准号:
    RGPIN-2017-05258
  • 财政年份:
    2022
  • 资助金额:
    $ 250万
  • 项目类别:
    Discovery Grants Program - Individual
Improvement of dust parameterization with data-assimilation-based parameter estimation
通过基于数据同化的参数估计改进灰尘参数化
  • 批准号:
    22K21337
  • 财政年份:
    2022
  • 资助金额:
    $ 250万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Parameter Estimation in Polyethylene Reactor Models
聚乙烯反应器模型中的参数估计
  • 批准号:
    573978-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 250万
  • 项目类别:
    University Undergraduate Student Research Awards
A Novel Framework for Automated Simultaneous Model Identification and Parameter Estimation in Kinetic Studies
动力学研究中自动同步模型识别和参数估计的新框架
  • 批准号:
    2722453
  • 财政年份:
    2022
  • 资助金额:
    $ 250万
  • 项目类别:
    Studentship
LEAPS-MPS: Dynamical Parameter Estimation for Hydrodynamic Equations
LEAPS-MPS:流体动力学方程的动力学参数估计
  • 批准号:
    2213363
  • 财政年份:
    2022
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
Parameter Estimation for Non-Gaussian Model-Based Clustering with High-Dimensional Data
基于非高斯模型的高维数据聚类参数估计
  • 批准号:
    RGPIN-2017-05258
  • 财政年份:
    2021
  • 资助金额:
    $ 250万
  • 项目类别:
    Discovery Grants Program - Individual
Autonomous parameter estimation for electric machines
电机的自主参数估计
  • 批准号:
    2602743
  • 财政年份:
    2021
  • 资助金额:
    $ 250万
  • 项目类别:
    Studentship
Statistical machine learning for efficient hidden parameter estimation and decision making
用于高效隐藏参数估计和决策的统计机器学习
  • 批准号:
    2601810
  • 财政年份:
    2021
  • 资助金额:
    $ 250万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了