A Novel Framework for Automated Simultaneous Model Identification and Parameter Estimation in Kinetic Studies
动力学研究中自动同步模型识别和参数估计的新框架
基本信息
- 批准号:2722453
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Digitalisation is driving a deep transformation in manufacturing sectors through the application of digital twins for chemical reaction systems design, control and real time optimisation. Digital twins are based on robust and reliable kinetic models to accurately predict the behaviour of chemical reactions and explore a wide range of operating conditions in the experimental design space. Digital twin models require costly experimentation for model validation and a significant investment of time and analytical resources to identify both model structure and precisely identify the system-specific set of kinetic parameters. The proposed project aims to develop a new software framework based on the integration of physics-informed machine learning (ML) techniques and model-based design of experiments (MBDoE) for the fast identification of kinetic models. The specific goals of this framework are: 1) simultaneous identification of reaction rate expressions and precise estimation of kinetic parameters; 2) robust design of experimental conditions under uncertainty and disturbances affecting a reaction system; 3) minimisation of physical runs for model calibration. The ultimate aim is to integrate this new software framework in reaction platforms recently developed at UCL allowing autonomous experimentation in catalytic flow reactors (a recent video can bee seen in https://www.youtube.com/watch?v=kMCtQqbPixk ). The project will develop along four main steps, each of which will last ~ 9 months:Stage 1. Development of a software module for machine-learning assisted MBDoE. A software module will be developed and tested in-silico implementing robust optimal experimental design techniques. In the module, ML models will be integrated to model potential uncertainty and disturbances affecting inputs and outputs to the system. Robust MBDoE techniques for model discrimination and improvement of parameter precision will be implemented to design experiments in the presence of parametric mismatch. Recently developed experimental design techniques for kinetic model selection using artificial neural networks (ANNs), currently applied offline, will be applied online and compared with standard MBDoE techniques for model identification. Stage 2. Development of a module for outliers detection. As the quality of data generated from a system is essential to identify both the correct kinetic model structure and the set of model parameters precisely, a module will be developed for data mining. This will implement model-based data mining (MBDM) and data-driven outlier detection techniques. These techniques will be tested in-silico by forcing uncertainty in the data acquired and compared to verify their effectiveness in online applications. Stage 3. Development of a module for physics-informed ML model identification. Physics-informed neural networks (PINNs) have been proposed to solve or discover time-dependent and nonlinear partial differential equations (PDEs). PINNs are neural networks trained to solve supervised learning tasks while respecting specific physics-informed constraints. Unlike standard deep neural networks, PINNs add physics-informed differential equations directly into the loss function when training a neural network. PINNs show the following advantages: 1) training a PINN model only requires a small amount of data; 2) the robustness is guaranteed by being forced to follow physical constraints; 3) intuitive results (i.e., the output of a PINN is a set of model functions). PINNs will be integrated in a module allowing to identify: i) reaction rate expressions (i.e. kinetic model structure); ii) reactor model (ideal, dispersion models); iii) both i) and ii) simultaneously. Stage 4. Integration of software modules in autonomous reaction platforms. Armed with the computational modules developed in stage 1, 2 and 3, an hardware/software graphical user interface (GUI) will be developed in LabView for communication with the hardware.
数字化正在推动制造业的深刻变革,将数字孪生应用于化学反应系统设计、控制和真实的时间优化。数字孪生模型基于强大而可靠的动力学模型,可准确预测化学反应的行为,并在实验设计空间中探索各种操作条件。数字孪生模型需要进行昂贵的模型验证实验,并投入大量时间和分析资源来识别模型结构并精确识别系统特定的动力学参数集。该项目旨在开发一种新的软件框架,该框架基于物理信息机器学习(ML)技术和基于模型的实验设计(MBDoE)的集成,用于快速识别动力学模型。该框架的具体目标是:1)同时识别反应速率表达式和精确估计动力学参数; 2)在影响反应系统的不确定性和干扰下的实验条件的稳健设计; 3)最小化用于模型校准的物理运行。最终目标是将这种新的软件框架集成到UCL最近开发的反应平台中,从而允许在催化流反应器中进行自主实验(最近的视频可以在https://www.youtube.com/watch?上看到v=kMCtQqbPixk)。该项目将发展沿着四个主要步骤,每一个将持续约9个月:第1阶段。开发用于机器学习辅助MBDoE的软件模块。将开发一个软件模块,并在计算机上进行测试,实施稳健的最佳实验设计技术。在该模块中,ML模型将被集成,以模拟影响系统输入和输出的潜在不确定性和干扰。稳健的MBDoE技术的模型判别和参数精度的提高将被实施,以设计实验中存在的参数失配。最近开发的实验设计技术的动力学模型选择使用人工神经网络(ANN),目前离线应用,将应用于在线和标准MBDoE技术模型识别相比。第二阶段异常值检测模块的开发。由于从一个系统产生的数据的质量是必不可少的,以确定正确的动力学模型结构和模型参数集精确,一个模块将开发数据挖掘。这将实施基于模型的数据挖掘(MBDM)和数据驱动的离群值检测技术。这些技术将通过在所获取的数据中施加不确定性来进行计算机测试,并进行比较,以验证其在在线应用中的有效性。第三阶段开发用于物理信息ML模型识别的模块。物理信息神经网络(PINN)已经被提出来求解或发现时间相关和非线性偏微分方程(PDE)。PINN是经过训练的神经网络,用于解决监督学习任务,同时尊重特定的物理约束。与标准的深度神经网络不同,PINN在训练神经网络时将物理信息微分方程直接添加到损失函数中。PINN显示出以下优点:1)训练PINN模型仅需要少量数据; 2)通过强制遵循物理约束来保证鲁棒性; 3)直观的结果(即,PINN的输出是一组模型函数)。PINN将被集成到一个模块中,允许识别:i)反应速率表达式(即动力学模型结构); ii)反应器模型(理想,分散模型); iii)同时i)和ii)。第四阶段自主反应平台中软件模块的集成。配备第1、2和3阶段开发的计算模块,将在LabView中开发硬件/软件图形用户界面(GUI),用于与硬件通信。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
CRII: SHF: An Automated and User-centered Framework for Reproducing System-level Concurrency Bugs by Analyzing Bug Reports
CRII:SHF:通过分析错误报告来重现系统级并发错误的自动化且以用户为中心的框架
- 批准号:
2348277 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
-- - 项目类别:
SaTC: CORE: Small: An Automated Framework for Mitigating Single-Trace Side-Channel Leakage
SaTC:核心:小型:用于减轻单迹侧通道泄漏的自动化框架
- 批准号:
2241879 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: An Automated Compiler-Runtime Framework for Democratizing Secure Collaborative Computation
职业:用于民主化安全协作计算的自动编译器运行时框架
- 批准号:
2238671 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
A Framework to Model Mixed Conventional and Automated Vehicular Traffic: Ameliorating Operations, Safety and Environmental Impacts
混合传统和自动车辆交通建模框架:改善运营、安全和环境影响
- 批准号:
RGPIN-2020-06760 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Safety assUraNce fRamework for connected, automated mobIlity SystEms (SUNRISE)
互联自动化移动系统的安全保证框架 (SUNRISE)
- 批准号:
10044530 - 财政年份:2022
- 资助金额:
-- - 项目类别:
EU-Funded
FAME: Framework for coordination of Automated Mobility in Europe
FAME:欧洲自动驾驶协调框架
- 批准号:
10040512 - 财政年份:2022
- 资助金额:
-- - 项目类别:
EU-Funded
A Fully Decentralized Federated Learning Framework for Automated Image Segmentation in Cancer Radiotherapy
用于癌症放射治疗自动图像分割的完全去中心化联合学习框架
- 批准号:
10303437 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Collaborative Research: SHF: Medium: A General Framework for Automated Test Transfer
合作研究:SHF:Medium:自动化测试传输的通用框架
- 批准号:
2106871 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




