EAGER: Stochastic Synchronization and Coordination Problems in Complex Networks with Time Delays
EAGER:具有时滞的复杂网络中的随机同步和协调问题
基本信息
- 批准号:1246958
- 负责人:
- 金额:$ 19.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-10-01 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThe Division of Materials Research and the Division of Mathematical Sciences contribute funds to this EAGER award. Synchronization, coordination, and balancing resources in networks are complex tasks and they are very sensitive to time delays. The PI will investigate the impact of time delays in stochastic network synchronization and coordination problems, which are present in most natural and engineered network-coupled systems. Delays can be attributed to both nonzero transmission times between the nodes and to non-zero time for the node to process and act. Time delays can have profound implications for the stability of signal and communication-driven systems at all scales, ranging from transport through disordered materials to cell kinetics and growth, neuronal networks, and genetic regulatory networks, to info-social and communication networks, leading to the emergence of optimization and trade-offs between low-connectivity/poor-communication and high-connectivity/frequent-communication instabilities. Building on recent advances in statistical physics and network science, it is precisely the combination of these three key ingredients - networks, noise, and time delays, which provides avenues for cross-cutting applications, and significant advance.The PI will also investigate fundamental statistical properties of extreme fluctuations in stochastic networks synchronization problems with time delays. Extreme fluctuations not only play an important role in disordered materials, but in infrastructure and information networks as well. Due to constrained costs, these networks are often designed to operate just below their capacity. Thus, in addition to the average load in the network, knowing the typical size and the distribution of the extreme fluctuations is of great importance from a system-design viewpoint, since system delays or global failures are often triggered by extreme events occurring on an individual node.The education and training of students and postdocs in simulations and modeling with applications in statistical physics and random networks are integral parts of the proposed research. Students and postdocs supported by this grant will be part of a larger interdisciplinary collaborative environment that facilitates collaborations within the university and with other universities in the United States. The PI will also be engaged in outreach activities, primarily through classroom interaction with high-school students which target science-oriented high-school students in the Albany, New York area.NON-TECHNICAL SUMMARYThe Division of Materials Research and the Division of Mathematical Sciences contribute funds to this EAGER award.The formal concept of networks involves nodes interconnected by links and provides a potentially insightful avenue to analyze natural and engineered systems. The internet and power grid are familiar examples of networks. The dynamical properties of networks are of increasing interest in the application of this concept to materials, biological systems such as cells and the brain, as well as in predicting the response of the power grid and other infrastructure networks to rapid changes in demand or component failure. The PI will combine the methods of statistical mechanics with network theory to investigate the role of time delays in networks in which individual nodes change their properties but interact only with their local neighbors. The large number of interacting nodes in most complex systems of interest from neurons in the brain to atoms in materials, leads to challenging problems. The theoretical advances in this project may enable progress on difficult problems, most notably in materials and biological systems and have impact on mathematics and statistics. The education and training of students and postdocs in simulations and modeling with applications in statistical physics and random networks are integral parts of the proposed research. Students and postdocs supported by this grant will be part of a larger interdisciplinary collaborative environment that facilitates collaborations within the university and with other universities in the United States. The PI will also be engaged in outreach activities, primarily through classroom interaction with high-school students which target science-oriented high-school students in the Albany, New York area.
技术总结材料研究部和数学科学部为这一热切的奖项提供资金。同步、协调和平衡网络中的资源是一项复杂的任务,它们对时间延迟非常敏感。PI将研究随机网络同步和协调问题中的时间延迟的影响,这些问题存在于大多数自然和工程网络耦合系统中。延迟既可以归因于节点之间的非零传输时间,也可以归因于节点处理和动作的非零时间。时间延迟可能对信号和通信驱动系统在所有尺度上的稳定性产生深远影响,从通过无序材料的运输到细胞动力学和生长、神经元网络和遗传调控网络,再到信息社会和通信网络,导致在低连接/通信不良和高连接/频繁通信不稳定之间出现优化和权衡。基于统计物理和网络科学的最新进展,正是这三个关键成分-网络、噪声和时延的结合,为交叉应用提供了途径,并取得了重大进展。PI还将研究具有时延的随机网络同步问题中极端波动的基本统计特性。极端波动不仅在无序的材料中发挥着重要作用,而且在基础设施和信息网络中也发挥着重要作用。由于成本有限,这些网络通常设计为在略低于其容量的情况下运行。因此,除了网络中的平均负载外,从系统设计的角度来看,了解极端波动的典型大小和分布是非常重要的,因为系统延迟或全局故障通常是由单个节点上发生的极端事件引发的。对学生和博士后进行模拟和建模以及在统计物理和随机网络中的应用方面的教育和培训是拟议研究的组成部分。这笔赠款支持的学生和博士后将成为更大的跨学科协作环境的一部分,该环境促进了大学内部的合作以及与美国其他大学的合作。PI还将参与外展活动,主要是通过与高中生的课堂互动,这些高中生的目标是纽约奥尔巴尼地区以科学为导向的高中生。非技术性总结材料研究部和数学科学部为这一渴望的奖项提供资金。网络的正式概念涉及通过链接相互连接的节点,并提供了一种潜在的有洞察力的途径来分析自然和工程系统。互联网和电网是人们熟悉的网络例子。在将这一概念应用于材料、细胞和大脑等生物系统以及预测电网和其他基础设施网络对需求快速变化或部件故障的响应方面,网络的动力学特性越来越引起人们的兴趣。PI将结合统计力学和网络理论的方法来研究时间延迟在网络中的作用,在网络中,单个节点改变其属性,但仅与其本地邻居交互。在大多数感兴趣的复杂系统中,从大脑中的神经元到材料中的原子,大量相互作用的节点导致了具有挑战性的问题。该项目的理论进展可能会使难题取得进展,尤其是在材料和生物系统方面,并对数学和统计学产生影响。对学生和博士后进行的模拟和建模以及在统计物理和随机网络中的应用方面的教育和培训是拟议研究的组成部分。这笔赠款支持的学生和博士后将成为更大的跨学科协作环境的一部分,该环境促进了大学内部的合作以及与美国其他大学的合作。PI还将参与外联活动,主要是通过与高中生的课堂互动,这些高中生的目标是纽约奥尔巴尼地区注重科学的高中生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gyorgy Korniss其他文献
Dynamic Phase Transition and Hysteresis in Kinetic Ising Models
动力学 Ising 模型中的动态相变和滞后
- DOI:
10.1007/978-3-642-59689-6_9 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
P. Rikvold;Gyorgy Korniss;C. White;M. A. Novotny;S. Sides - 通讯作者:
S. Sides
Gyorgy Korniss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gyorgy Korniss', 18)}}的其他基金
Collaborative Research: QEIB: Spatial Ecologies Under Temporal Variation
合作研究:QEIB:时间变化下的空间生态
- 批准号:
0918413 - 财政年份:2009
- 资助金额:
$ 19.2万 - 项目类别:
Standard Grant
ITR-(ASE+NHS)-(sim+dmc): Non-Equilibrium Surface Growth and the Scalability of Parallel Discrete-Event Simulations for Large Asynchronous Systems
ITR-(ASE NHS)-(sim dmc):大型异步系统的非平衡表面生长和并行离散事件仿真的可扩展性
- 批准号:
0426488 - 财政年份:2004
- 资助金额:
$ 19.2万 - 项目类别:
Standard Grant
ITR/AP(MPS): Non-Equilibrium Surface Growth and the Scalability of Parallel Discrete-Event Simulations for Large Asynchronous Systems
ITR/AP(MPS):大型异步系统的非平衡表面生长和并行离散事件仿真的可扩展性
- 批准号:
0113049 - 财政年份:2001
- 资助金额:
$ 19.2万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Research Grant
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Standard Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337427 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Standard Grant
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
- 批准号:
EP/X041239/1 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Research Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
- 批准号:
EP/Y033248/1 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Research Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Continuing Grant
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
- 批准号:
2338221 - 财政年份:2024
- 资助金额:
$ 19.2万 - 项目类别:
Continuing Grant