INSPIRE: Computer Learning of Dynamical Systems to Investigate Cognitive and Motivational Effects of Social Media Use on Political Participation
INSPIRE:动态系统的计算机学习研究社交媒体使用对政治参与的认知和动机影响
基本信息
- 批准号:1248077
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This INSPIRE award is partially funded by Human-Centered Computing Program and by Social-Computational Systems Program both in the Division of Information and Intelligent Systems in the Directorate for Computer & Information Science & Engineering, and by the Social Psychology Program in the Division of Behavioral and Cognitive Sciences and the Political Science Program in the Division of Social and Economic Sciences in the Directorate for Social, Behavioral and Economic Sciences.With regards to intellectual merit, the goal of this project is to forge an interdisciplinary collaboration that examines the impact of social media on political behavior. First, from social psychology and political science, fundamental hypotheses will be developed about how, why and when social media affects citizens' cognition and motivation with respect to political participation. Second, these questions will be expressed as testable hypotheses derived from behavioral models. And third, drawing from biology and computer science, the project adapts sophisticated computational methods of approximate inference and machine learning (adapting methods developed for the analysis of Systems Biology data) to evaluate the behavioral models using extremely large social media and social network datasets. The scientific opportunities afforded by the use of social media are readily apparent when we consider the richness and precision of data on participation in elections, protests, riots, and other spontaneous political events. This project will construct a comprehensive data set of incoming and outgoing social media messages messages using systematically structure formats that are ideally suited to machine learning methods, and this information will be integrated with information on social network connectivity and a vast array of metadata on individuals and their social contacts. By developing new methods to harvest and combine these data sources effectively, it will be possible to transform the scientific study of social and political attitudes and behavior. Every time individuals use social media, they leave behind a digital footprint of what was communicated, when it was communicated, and, to whom it was communicated. Typically, such precise estimates of these variables are available only to laboratory investigators working in artificial settings. No previous study has successfully used fine-grained social influence data such as these to predict consequential behavioral outcomes, such as attendance at a given protest or rally. The structure of the data means that we will have panel data on respondents, many of potentially long duration. In addition, the investigators will conduct a panel survey, which is essential for drawing causal inferences about the cognitive and motivational processes whereby social media use facilitates political participation.With regards to broader impacts, this research will enhance interdisciplinary training for graduate and undergraduate students. These include students in psychology, political science, computer science, and biology and also includes students from groups that are underrepresented in these sciences. In addition, opportunities will be provided for high school students to become involved in the research process. The research program will foster broad dissemination of scientific understanding by leveraging past experience of the principal investigators with disseminating large code-bases, data-bases, and data-sets to share work with other scientists (pre-publication). Finally, the researchers are committed to making their research available to the general public and have extensive experience doing so.
该INSPIRE奖部分由计算机信息科学工程局信息和智能系统司的以人为中心的计算计划和社会计算系统计划资助&&,并由行为和认知科学司的社会心理学计划以及社会和经济科学司的政治科学计划资助。行为和经济科学。关于智力价值,这个项目的目标是建立一个跨学科的合作,研究社会媒体对政治行为的影响。首先,从社会心理学和政治学的角度,对社会媒体如何、为何以及何时影响公民的政治参与认知和动机提出基本假设。其次,这些问题将被表达为来自行为模型的可检验假设。第三,借鉴生物学和计算机科学,该项目采用了近似推理和机器学习的复杂计算方法(为分析系统生物学数据而开发的适应方法),以评估使用超大社交媒体和社交网络数据集的行为模型。 当我们考虑到参与选举、抗议、骚乱和其他自发政治事件的数据的丰富性和精确性时,社交媒体的使用所提供的科学机会是显而易见的。该项目将使用非常适合机器学习方法的系统结构格式,构建一个关于传入和传出社交媒体消息的综合数据集,这些信息将与社交网络连接信息以及关于个人及其社交联系人的大量元数据相结合。通过开发新的方法来有效地收集和联合收割机这些数据源,将有可能改变对社会和政治态度和行为的科学研究。每次个人使用社交媒体时,他们都会留下一个数字足迹,包括传达的内容,何时传达,以及传达给谁。通常情况下,这些变量的精确估计只有在人工环境中工作的实验室研究人员才能获得。此前没有任何研究成功地使用诸如此类的细粒度社会影响数据来预测相应的行为结果,例如参加给定的抗议或集会。数据的结构意味着我们将有关于受访者的面板数据,其中许多可能持续很长时间。 此外,研究者还将进行小组调查,这对于推断社交媒体促进政治参与的认知和动机过程的因果关系至关重要。关于更广泛的影响,这项研究将加强对研究生和本科生的跨学科培训。这些学生包括心理学,政治学,计算机科学和生物学,还包括来自这些科学中代表性不足的群体的学生。此外,还将为高中生提供参与研究过程的机会。该研究计划将通过利用主要研究人员过去的经验,传播大型代码库,数据库和数据集,与其他科学家分享工作,促进科学理解的广泛传播(预出版)。最后,研究人员致力于向公众提供他们的研究,并在这方面拥有丰富的经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Jost其他文献
Microresonator photonic wire bond integration for Kerr-microcomb generation
- DOI:
10.1038/s41598-024-79945-4 - 发表时间:
2024-11-23 - 期刊:
- 影响因子:3.900
- 作者:
Alain Yuji Takabayashi;Nikolay Pavlov;Victoria Rosborough;Galen Hoffman;Lou Kanger;Farzad Mokhtari Koushyar;Taran Huffman;Mike Nelson;Charles Turner;Leif Johansson;Juergen Musolf;Henry Garrett;Thomas Liu;Gordon Morrison;Yanne Chembo;Brian Mattis;Thien-An Nguyen;Mackenzie Van Camp;Steven Eugene Turner;Maxim Karpov;John Jost;Zakary Burkley - 通讯作者:
Zakary Burkley
John Jost的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Jost', 18)}}的其他基金
NSF/SBE-BSF: Ideological Differences in Emotion Regulation Processes in Interpersonal and Intergroup Contexts
NSF/SBE-BSF:人际和群体间情绪调节过程的意识形态差异
- 批准号:
1627691 - 财政年份:2016
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Doctoral Dissertation Research in Political Science: Motivated Information Processing: A Policy Case
政治学博士论文研究:动机信息处理:一个政策案例
- 批准号:
1226944 - 财政年份:2012
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Fostering US-International Collaborative Partnerships in Chemistry
促进美国与国际化学领域的合作伙伴关系
- 批准号:
0838627 - 财政年份:2008
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Dynamic Cognitive and Motivational Properties of System Justification
系统论证的动态认知和动机特性
- 批准号:
0617558 - 财政年份:2006
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
基于多重计算全息片(Computer-generated Hologram,CGH)的光学非球面干涉绝对检验方法研究
- 批准号:62375132
- 批准年份:2023
- 资助金额:54.00 万元
- 项目类别:面上项目
Journal of Computer Science and Technology
- 批准号:61224001
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Journal of Computer Science and Technology
- 批准号:61040017
- 批准年份:2010
- 资助金额:4.0 万元
- 项目类别:专项基金项目
相似海外基金
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on personalization of spoken-dialogue-based computer-assisted-language-learning system
基于口语对话的计算机辅助语言学习系统的个性化研究
- 批准号:
23K24962 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploring Theory and Design Principles (ETD): Auditing Machine Learning Applications for Algorithmic Justice with Computer Science High School Students and Teachers
探索理论和设计原则 (ETD):与计算机科学高中学生和教师一起审核机器学习应用程序的算法正义
- 批准号:
2342438 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
- 批准号:
10564534 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Targeted Infusion Project: Infusing deep learning into the undergraduate computer science and engineering curricula
有针对性的注入项目:将深度学习注入本科计算机科学与工程课程
- 批准号:
2306141 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Design of Federated Learning Framework as Computer Systems
作为计算机系统的联邦学习框架的设计
- 批准号:
23K16858 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10838152 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Development of an sEMG-based Human-Computer Interface Utilizing Deep Transfer Learning and Continual Learning
利用深度迁移学习和持续学习开发基于表面肌电图的人机界面
- 批准号:
23H03445 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (B)