INSPIRE: Nonlinear Data Reduction applied to Dense Granular Media

INSPIRE:应用于密集颗粒介质的非线性数据缩减

基本信息

  • 批准号:
    1248071
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

This INSPIRE award is partially funded by the Applied Mathematics and the Topology program in the Division of Mathematical Sciences in the Directorate for Mathematical and Physical Sciences and the Granular Materials Program in the Division of Chemical, Bioengineering, Environmental, and Transport Systems in the Engineering Directorate. It will support work that uniquely combines state of the art experimental techniques, large scale molecular dynamics simulations, and cutting edge theoretical developments in topological data analysis for the purpose of understanding and predicting the behavior of dense granular materials (DGM). In particular, it is based on the novel proposition of using persistence diagrams, a relatively new concept in applied algebraic topology, as the fundamental modeling tool for DGM. The core tasks include the following. (1) Develop an efficient computational framework for working with persistence diagram data arising from spatiotemporal systems. (2) Using discrete element simulations (DEM) and experiments, carry out precise, well-defined, and complete characterizations of forces and stresses in DGM, including spatial and temporal variability of a given system and quantification of the differences between simulations and experiments. (3) Formulation of an optimum combination of experiments and simulations to be used to analyze a given system, leading to reliable predictions for the nature and evolution of macroscopic quantities describing a system including stresses and bulk and shear moduli. (4) Use of persistence diagrams to characterize spatial and temporal fluctuations, including the dependence on system size, on the physical dimensions (e.g. 2D versus 3D), and particle properties such as shape or friction. (5) Study the topology of the space of persistence diagrams. Characterize the dynamics of DGM by using purely topological techniques to study time series reconstructed dynamics.Granular materials in the dense fluid-like and solid states present one of the most significant modeling challenges of our times. These materials appear in a broad spectrum of practical settings from heavy industry to pharmaceuticals. As such, they are of intense interest to the engineering world. The way in which grains pack and in which forces are carried in DGM presents a significant puzzle for the soft condensed matter and statistical physics communities. Associated with force and packing complexity are challenging mathematical issues related to the analysis of complex high dimensional multiscale spatiotemporal data. DGM are inherently high dimensional systems in which geometry plays a fundamental role. However because of their granular nature they cannot be usefully approximated by analytic continuum models and thus a clear method of reduction to a tractable problem is lacking. Our goal is to demonstrate that new ideas associated with computational topology provide an efficient, faithful and coherent approach to providing tractable models for the temporal evolution of spatial structures in DGM. The abstract nature of the topological methods being developed imply that the tools developed in this context will be applicable to a wide range of systems demonstrating complex spatiotemporal structures.
该INSPIRE奖的部分资金来自数学与物理科学局数学科学部的应用数学和拓扑项目,以及工程局化学、生物工程、环境和运输系统部的颗粒材料项目。它将支持将最先进的实验技术、大规模分子动力学模拟和拓扑数据分析的前沿理论发展相结合的工作,以理解和预测致密颗粒材料(DGM)的行为。特别是,它基于使用持久性图的新命题,持久性图是应用代数拓扑中的一个相对较新的概念,作为DGM的基本建模工具。核心任务包括以下内容。(1)开发一个有效的计算框架,用于处理来自时空系统的持久性图数据。(2)利用离散元模拟(DEM)和实验,对DGM中的力和应力进行精确、明确和完整的表征,包括给定系统的空间和时间变异,以及模拟和实验之间的差异的量化。(3)制定用于分析给定系统的实验和模拟的最佳组合,从而对描述包括应力、体积和剪切模量在内的系统的宏观量的性质和演变进行可靠的预测。(4)使用持久性图来表征空间和时间波动,包括对系统大小、物理维度(如2D与3D)和粒子特性(如形状或摩擦)的依赖。(5)研究持久图空间的拓扑结构。利用纯拓扑技术研究时间序列重构动力学,表征DGM的动力学特性。颗粒材料在密集的流体状和固体状态提出了我们这个时代最重要的建模挑战之一。这些材料出现在从重工业到制药业的广泛实际环境中。因此,它们引起了工程界的强烈兴趣。对于软凝聚态物质和统计物理学界来说,在DGM中颗粒堆积和力传递的方式是一个重大的难题。与力和包装复杂性相关的复杂高维多尺度时空数据分析是具有挑战性的数学问题。DGM本质上是高维系统,几何在其中起着基本的作用。然而,由于它们的颗粒性质,它们不能用解析连续统模型有效地近似,因此缺乏一种明确的简化为可处理问题的方法。我们的目标是证明与计算拓扑相关的新思想为DGM空间结构的时间演化提供了一种高效、可靠和连贯的方法。正在开发的拓扑方法的抽象性质意味着在这种情况下开发的工具将适用于展示复杂时空结构的广泛系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konstantin Mischaikow其他文献

Dynamical time series analysis using a topological computation method
使用拓扑计算方法进行动态时间序列分析
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Justin Bush;Marcio Gameiro;Shaun Harker;Hiroshi Kokubu;Konstantin Mischaikow;Ippei Obayashi;Pawel Pilarczyk;Hiroshi Kokubu;Hiroshi Kokubu;井関 裕靖;Hiroshi Kokubu;Hiroyasu Izeki;Hiroshi Kokubu
  • 通讯作者:
    Hiroshi Kokubu
Conley Indices for continuous and discrete time dynamical systems
连续和离散时间动力系统的康利指数
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomas Gedeon;Shaun Harker;Hiroshi Kokubu;Konstantin Mischaikow;Hiroe Oka;Hiroe Oka;Hiroe Oka;Hiroe Oka
  • 通讯作者:
    Hiroe Oka
らせん渦の不安定化過程の直接数値シミュレーション
螺旋涡失稳过程的直接数值模拟
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William Duncan;Tomas Gedeon;Hiroshi Kokubu;Konstantin Mischaikow;Hiroe Oka,;服部裕司
  • 通讯作者:
    服部裕司
ガンマ線バーストを用いた初期宇宙・極限時空探査計画 HiZ-GUNDAM
HiZ-GUNDAM,利用伽马射线爆发的早期宇宙和极限时空探索项目
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William Duncan;Tomas Gedeon;Hiroshi Kokubu;Konstantin Mischaikow;Hiroe Oka,;服部裕司;米徳大輔
  • 通讯作者:
    米徳大輔
離散群の剛性と同変写像のエネルギーの増大度
离散群的刚度和等变映射能量的增加程度
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Justin Bush;Marcio Gameiro;Shaun Harker;Hiroshi Kokubu;Konstantin Mischaikow;Ippei Obayashi;Pawel Pilarczyk;Hiroshi Kokubu;Hiroshi Kokubu;井関 裕靖
  • 通讯作者:
    井関 裕靖

Konstantin Mischaikow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konstantin Mischaikow', 18)}}的其他基金

Topological and Rigorous Computational Methods for High Dimensional Dynamics
高维动力学的拓扑和严格计算方法
  • 批准号:
    1841324
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Tripods+X:Res: Collaborative Research: Identification of Gene Regulatory Network Function from Data
Tripods X:Res:协作研究:从数据中识别基因调控网络功能
  • 批准号:
    1839294
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Revealing the Geometry of Spatio-temporal Chaos with Computational Topology: Theory, Numerics and Experiment
合作研究:用计算拓扑揭示时空混沌的几何:理论、数值和实验
  • 批准号:
    1622401
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational and Data-Enabled Science and Engineering: Characterizing Dynamics of Particle-based Systems
合作研究:计算和数据支持的科学与工程:表征基于粒子的系统的动力学
  • 批准号:
    1521771
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CDI-TYPE II--COLLABORATIVE RESEARCH: Using Algebraic Topology to Connect Models with Measurements in Complex Nonequilibrium Systems
CDI-TYPE II——协作研究:使用代数拓扑将模型与复杂非平衡系统中的测量联系起来
  • 批准号:
    1125174
  • 财政年份:
    2011
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative proposal: Computing Dynamics of Multiparameter Systems
合作提案:多参数系统的计算动力学
  • 批准号:
    0915019
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CDI-Type II: Collaborative Research: Computational Homology, Jamming, and Force Chains in Dense Granular Flows
CDI-Type II:协作研究:密集颗粒流中的计算同源性、干扰和力链
  • 批准号:
    0835621
  • 财政年份:
    2008
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Proposal: NCR-Circuit Dynamics
合作提案:NCR-电路动力学
  • 批准号:
    0650289
  • 财政年份:
    2006
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Methods for the Study of Nonlinear Infinite Dimensional Systems
合作研究:研究非线性无限维系统的拓扑方法
  • 批准号:
    0638131
  • 财政年份:
    2006
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Methods for the Study of Nonlinear Infinite Dimensional Systems
合作研究:研究非线性无限维系统的拓扑方法
  • 批准号:
    0511115
  • 财政年份:
    2005
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
  • 批准号:
    23K03437
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
  • 批准号:
    23K03913
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
  • 批准号:
    2348826
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
  • 批准号:
    2403552
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
  • 批准号:
    2308200
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
New approaches in Functional Data Analysis: inference for incomplete or correlated data and nonlinear methods
函数数据分析的新方法:不完整或相关数据的推理以及非线性方法
  • 批准号:
    RGPIN-2020-07235
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Nonlinear Dynamics from Data Using Sparse Optimization and Compressed Sensing
使用稀疏优化和压缩感知从数据中学习非线性动力学
  • 批准号:
    RGPIN-2018-06135
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Forecasting Multivariate and Nonlinear Time Series, and Analysis of Complex Survey Data
多元和非线性时间序列的建模和预测以及复杂调查数据的分析
  • 批准号:
    RGPIN-2020-05016
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了