Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
基本信息
- 批准号:2308200
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project involves the development of new methods for determining internal material parameters from external measurements, with a focus on radar applications, medical imaging, and optical design. In the new algorithms, a key innovation lies in using the data itself to generate a compact model for wave propagation, resulting in highly efficient image reconstruction. The applicability of these algorithms will be expanded to handle large and noisy data sets, complex media, and scenarios where sources and receivers are not collocated—a significant limitation in existing reduced model approaches. Furthermore, novel methodologies will be developed for the reconstruction of materials exhibiting nonlinear wave propagation characteristics. By reducing computational costs, the methods developed in this project will enable improved imaging in large-scale situations. Several students will be trained over the course of this research, and plans to promote diversity and inclusion in research are integrated into student recruitment.This research will overcome challenges to image reconstruction by improving some of the most promising direct methods for inversion. This includes (i) expanding data driven reduced order model imaging methods to very general classes of data sets, models with nonlocal operators and transmission problems, while at the same time establishing a rigorous foundation, (ii) developing novel inversion methods for coefficient determination when the underlying forward model is nonlinear and (iii) imaging general linear and nonlinear anisotropy in the hybrid method Magnetoacoustic Tomography with Magnetic Induction. The novel reduced order model approaches will be developed to handle large and noisy data sets, problems in which source and receiver are not collocated, and imaging problems with dispersion. The inverse Born series will be adapted to handle inversion where the forward problem is nonlinear, and its application will rely on the description of the forward series and will involve a convergence analysis. The well-posedness of the system of transport equations for Magnetoacoustic Tomography with Magnetic Induction imaging of general anisotropy will be established using carefully defined inflow boundary conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及开发从外部测量中确定内部材料参数的新方法,重点是雷达应用、医学成像和光学设计。在新算法中,一个关键的创新在于使用数据本身来生成波传播的紧凑模型,从而实现高效的图像重建。这些算法的适用性将被扩展到处理大型和嘈杂的数据集,复杂的媒体,以及源和接收器没有搭配的场景-这是现有简化模型方法中的一个重大限制。此外,将开发新的方法来重建具有非线性波传播特性的材料。通过降低计算成本,该项目开发的方法将改善大规模情况下的成像。几名学生将在这项研究的过程中接受培训,并计划促进研究的多样性和包容性纳入学生招聘。本研究将通过改进一些最有前途的直接反演方法来克服图像重建的挑战。这包括(i)将数据驱动的降阶模型成像方法扩展到非常一般的数据集、具有非局部算子和传输问题的模型,同时建立严格的基础;(ii)开发新的反演方法,用于在底层正演模型为非线性时确定系数;(iii)在磁感应磁声层析成像混合方法中成像一般线性和非线性各向异性。将开发新的降阶模型方法来处理大型和有噪声的数据集,源和接收器未配置的问题,以及具有色散的成像问题。逆玻恩级数将适用于处理非线性正演问题的反演,它的应用将依赖于对正演级数的描述,并将涉及收敛分析。利用仔细定义的流入边界条件,将建立具有一般各向异性磁感应成像的磁声层析成像输运方程系统的适定性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shari Moskow其他文献
Nonlinear eigenvalue approximation for compact operators
紧凑算子的非线性特征值近似
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Shari Moskow - 通讯作者:
Shari Moskow
A PRECONDITIONING METHOD FOR THIN HIGH CONTRAST 1 SCATTERING STRUCTURES 2
薄高对比度 1 散射结构 2 的预处理方法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Josef A. Sifuentes;Shari Moskow - 通讯作者:
Shari Moskow
Regularized Reduced Order Lippman-Schwinger-Lanczos Method for Inverse Scattering Problems in the Frequency Domain
频域逆散射问题的正则降阶Lippman-Schwinger-Lanczos方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Justin Baker;Elena Cherkaev;V. Druskin;Shari Moskow;M. Zaslavsky - 通讯作者:
M. Zaslavsky
A generalized eigenproblem for the Laplacian which arises in lightning
闪电中出现的拉普拉斯算子的广义本征问题
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
B. C. Aslan;W. Hager;Shari Moskow - 通讯作者:
Shari Moskow
Scattering of electromagnetic waves by thin high contrast dielectrics: effects of the object boundary
薄的高对比度电介质对电磁波的散射:物体边界的影响
- DOI:
10.4310/cms.2013.v11.n1.a9 - 发表时间:
2013 - 期刊:
- 影响因子:1
- 作者:
D. Ambrose;Shari Moskow - 通讯作者:
Shari Moskow
Shari Moskow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shari Moskow', 18)}}的其他基金
Novel Image Reconstruction Methods in the Frequency Domain
频域中的新颖图像重建方法
- 批准号:
2008441 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
OP: Heterogeneous Optical Media: Boundary Effects, Spectral Properties, and Inversion
OP:异构光学介质:边界效应、光谱特性和反演
- 批准号:
1715425 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
NSF-SIAM Optics and Photonics Workshop
NSF-SIAM 光学与光子学研讨会
- 批准号:
1620860 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Nonlinear spectral problems in electromagnetics: asymptotics and inversion.
电磁学中的非线性谱问题:渐近和反演。
- 批准号:
1411721 - 财政年份:2014
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Direct Reconstruction Methods for Optical Tomography and Related Inverse Problems
合作研究:光学断层扫描的直接重建方法及相关反问题
- 批准号:
1108858 - 财政年份:2011
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Asymptotics at Resonant Scales: Application to Inhomogeneous Material Simulation, Discretization and Inversion
共振尺度渐进:在非均匀材料模拟、离散化和反演中的应用
- 批准号:
0749396 - 财政年份:2007
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Asymptotics at Resonant Scales: Application to Inhomogeneous Material Simulation, Discretization and Inversion
共振尺度渐进:在非均匀材料模拟、离散化和反演中的应用
- 批准号:
0605021 - 财政年份:2006
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Asymptotic Expansions, Inverse Problems and Homogenization of Boundary Values
渐进展开、反问题和边界值齐次化
- 批准号:
0072511 - 财政年份:2000
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
CAREER: CAS: Organic Photochemistry for Light-Driven CO2 Capture and Release
职业:CAS:光驱动二氧化碳捕获和释放的有机光化学
- 批准号:
2338206 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341994 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Cooperativity Driven Communication through Noncovalent Networks in Biomimetic Systems
仿生系统中通过非共价网络的协作驱动通信
- 批准号:
2404149 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
- 批准号:
2340042 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant