Collaborative EAGER Research: Mineral reactions during seismic slip and earthquake instability

EAGER 协作研究:地震滑移和地震不稳定期间的矿物反应

基本信息

  • 批准号:
    1248103
  • 负责人:
  • 金额:
    $ 6.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

Although a great deal is known about the location of earthquakes and their danger to society, our knowledge of the underlying physics of how they nucleate and, especially, the physical processes operating as the slipped area on the fault expands during an earthquake is still poorly understood. Greater knowledge of these processes is necessary to better predict seismic shaking danger and, it is hoped, to one day enable prediction of major earthquakes. This EAGER project will use experimental studies and high-resolution electron microscopy to test a new hypothesis of how the slip on continental earthquakes occurs. Earthquakes are understood to initiate by two distinctly different processes: In the cold, low-pressure, environment of the upper few tens of km within the Earth, earthquakes generally begin by overcoming static friction on pre-existing faults. However, earthquakes also occur continuously to depths approaching 700 km in subducting oceanic lithosphere where the pressure is too high to allow brittle failure. Experiments show that shear failure (faulting) at high pressure requires a mineral reaction that yields a small amount of 'fluid' for their initiation and expansion; the 'fluid' can be either a true fluid (eg. H2O or CO2) or a nanocrystalline solid exhibiting an extremely low viscosity in the solid state. One of the two PIs of this project (Reches) is a leading expert in frictional sliding and the other (Green) is the world leader in high-pressure shear failure. They are joined by two leading experts on the physics of earthquakes of the US Geological Survey (D. Lockner and N. Beeler) at no cost to the project. This EAGER project will test the hypothesis that the process of mineral-reaction-induced shearing instability, the mechanism of faulting at high pressure, can also operate in shallow earthquakes where it is activated by the frictional heating/straining that occurs during initiation of earthquake slip. The team envisions two main ways in which this may occur: (1) Breakdown of clay minerals or carbonates in the fault zone releasing a fluid (water or CO2, respectively) that results in a large drop of the resistance to sliding on the fault; (2) generation of extremely small particles during initiation of sliding that form a nanocrystalline solid that can flow by grain-boundary sliding at seismogenic speeds, as has already been demonstrated for high-pressure faulting. Models of earthquake slip, experiments, and examination of fault zones in the field strongly suggest that shear-heating-induced devolatilization occurs in some earthquakes. The high-pressure experimental observations that such reactions lead to shearing instabilities further suggest that similar processes could enhance shallow earthquakes. Similarly, recent laboratory work in at least two laboratories concludes that powder-lubrication may be a critical part of fault propagation and lubrication. The key question we will test experimentally is whether such shear-heating-induced mineral reactions can lead to rapid drop in friction and/or enhancement of slip under shallow crust conditions. The team will investigate the role of 'fluid'-producing reactions in fault mechanics. They will activate shear-induced devolatilization in laboratory experiments at the University of Oklahoma by high-speed sliding under a range of normal stresses. They then will characterize by high-resolution Scanning and Transmission electron microscopy at UC Riverside the microstructure of gouge and sliding surface produced in these experiments and compare those microstructures with the 'superplastic' fault-filling materials produced in high-pressure faulting experiments. Preliminary results on carbonate that are very encouraging. Broader Impacts: This project brings together scientists and graduate students from two university campuses and a federal government lab for an EAGER project with potentially profound consequences for residents of earthquake-prone areas such as California. If this work demonstrates that devolatilization is directly responsible for friction drop and/or that fault gouges of large earthquakes are weak nanocrystalline solids, they will have opened a door that will lead to greater understanding of faulting and potentially will lead to a better understanding of which parts of which faults in a given area such as California are dangerous and which are not. The students of this project (one at OU and the other at UCR), with the likely addition of undergraduate assistants, will receive training on state-of-the-art instrumentation and will participate in research at the frontier of their science.
虽然我们对地震的位置及其对社会的危害已经有了很多了解,但我们对地震如何成核的基本物理知识,特别是地震期间断层上滑动区域扩展的物理过程,仍然知之甚少。对这些过程的更多了解是更好地预测地震危险所必需的,希望有一天能够预测大地震。EAGER项目将使用实验研究和高分辨率电子显微镜来测试大陆地震滑动如何发生的新假设。 地震被认为是由两个截然不同的过程引发的:在地球内部几十公里的寒冷低压环境中,地震通常是通过克服先前存在的断层上的静摩擦而开始开始的。然而,在俯冲的海洋岩石圈中,地震也连续发生到接近700公里的深度,那里的压力太高,不允许脆性破坏。实验表明,在高压下的剪切破坏(断层)需要矿物反应,产生少量的“流体”,用于它们的启动和扩张;“流体”可以是真正的流体(例如,H2O或CO2)或在固态下表现出极低粘度的纳米晶体固体。该项目的两名PI之一(Reches)是摩擦滑动方面的领先专家,另一名PI(绿色)是高压剪切破坏方面的世界领先者。美国地质调查局的两位地震物理学方面的权威专家(D。Lockner和N. Beeler),对该项目没有任何成本。这个EAGER项目将测试这样一个假设,即矿物反应引起的剪切不稳定性过程,即高压下的断层机制,也可以在浅层地震中起作用,在浅层地震中,它被地震滑动开始期间发生的摩擦加热/应变激活。该团队设想了两种主要方式:(1)断裂带中的粘土矿物或碳酸盐分解释放出流体(分别为水或CO2),其导致在断层上的滑动阻力的大幅下降;(2)在滑动开始期间产生极小的颗粒,其形成纳米晶体固体,该纳米晶体固体可以通过晶界滑动以孕震速度流动,正如已经证明的高压断层作用。 地震滑动模型、实验和对现场断层带的检查强烈表明,剪切加热引起的挥发作用发生在某些地震中。高压实验观察到这种反应导致剪切不稳定性,进一步表明类似的过程可能会增强浅层地震。类似地,最近至少两个实验室的实验室工作得出结论,粉末润滑可能是故障传播和润滑的关键部分。我们将通过实验测试的关键问题是,这种剪切加热引起的矿物反应是否会导致摩擦力的快速下降和/或在地壳浅层条件下滑动的增强。该团队将研究断层力学中“流体”产生反应的作用。他们将在俄克拉荷马州大学的实验室实验中,通过在一系列正常应力下的高速滑动,激活剪切诱导的脱挥发分。然后,他们将在加州大学滨江分校通过高分辨率扫描和透射电子显微镜表征这些实验中产生的断层泥和滑动表面的微观结构,并将这些微观结构与高压断层实验中产生的“超塑性”断层填充材料进行比较。关于碳酸盐的初步结果非常令人鼓舞。更广泛的影响:该项目汇集了来自两个大学校园和一个联邦政府实验室的科学家和研究生,为一个EAGER项目,对加州等地震多发地区的居民可能产生深远的影响。如果这项工作表明,脱挥发分是直接负责摩擦下降和/或断层泥的大地震是弱纳米晶体固体,他们将打开一扇门,将导致更好地了解断层,并可能会导致更好地了解哪些部分的断层在一个给定的地区,如加州是危险的,哪些不是。这个项目的学生(一个在斯坦福大学,另一个在加州大学河滨分校),可能会增加本科生助理,将接受最先进的仪器培训,并将参加他们的科学前沿的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ze'ev Reches其他文献

Ze'ev Reches的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ze'ev Reches', 18)}}的其他基金

Investigating Earthquake Source Processes in the Laboratory
在实验室研究地震源过程
  • 批准号:
    1620330
  • 财政年份:
    2016
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
Experimental simulation of earthquake rupture processes
地震破裂过程的实验模拟
  • 批准号:
    1345087
  • 财政年份:
    2014
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Analysis of fault rupture processes by earthquake-like slipevents in the laboratory
实验室类地震滑动事件分析断层破裂过程
  • 批准号:
    1045414
  • 财政年份:
    2011
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Development of an experimental system for analyzing the rheology of dense granular materials and fault gouge under seismic conditions
地震条件下致密颗粒材料和断层泥流变分析实验系统的开发
  • 批准号:
    0732715
  • 财政年份:
    2008
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
Natural Earthquake Laboratory in South African Mines (NELSAM)
南非矿山自然地震实验室 (NELSAM)
  • 批准号:
    0409605
  • 财政年份:
    2004
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了