CIF: EAGER: Modeling and Querying of Probabilistic Biological Networks

CIF:EAGER:概率生物网络的建模和查询

基本信息

  • 批准号:
    1251599
  • 负责人:
  • 金额:
    $ 17.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

Many critical functions performed by organisms are governed by a complex network of interactions among various biochemical molecules. Understanding how different functions are served through these interactions is of utmost importance. Like many processes in the biological realm, interactions are probabilistic events. An interaction may or may not happen with some probability, depending on a variety of factors such as the size, abundance or proximity of the interacting molecules. The probabilistic nature of the interactions introduces significant computational challenges in studying biological networks.Intellectual Merit:This project develops novel computational techniques that characterize and compare probabilistic networks. More specifically, this proposal addresses the following problems. - (Modeling) It will develop novel mathematical models that characterize topological properties of probabilistic networks precisely and efficiently.- (Comparative analysis) It will develop a framework that allows comparing biological networks when at least one of them is probabilistic.Characterizing the implications of uncertainties in interactions of biological networks is a computationally interesting and challenging problem. The main difficulty is that probabilistic interactions yield an exponential number of alternative network topologies. At the heart of this project lies a novel mathematical technique based on probability generating functions. This technique reduces a broad set of questions on the network structure to operations on polynomials resulting in very efficient algorithms. This project will use this technique to address the problem of aligning probabilistic biological networks. Broader Impact:Numerous applications follow an interaction pattern that resembles biological networks. Wireless networks, sensor networks, social networks and homeland security are just a few examples. A critical common property of these applications is that the interactions that define them are probabilistic events. This project will enable studying such networks and thus will help answering fundamental queries such as: What are the similar patterns between two social networks?, How fast do we expect a virus spread through a given wireless network? precisely and efficiently even when interactions are probabilistic.This project will also have educational impact. The PIs will recruit and train a graduate student as a part of this project. Finally, the code developed in this project will serve as an excellent educational tool to analyze and query data for a broad spectrum of applications, where the database consists of a set of interacting entities.
生物体所执行的许多关键功能是由各种生物化学分子之间复杂的相互作用网络控制的。了解不同的功能是如何通过这些相互作用是至关重要的。就像生物领域的许多过程一样,相互作用是概率事件。相互作用可能会或可能不会以一定的概率发生,这取决于各种因素,如相互作用分子的大小,丰度或接近程度。相互作用的概率性质在研究生物networks.Intellectual优点:这个项目开发新的计算技术,表征和比较概率网络引入了重大的计算挑战。更具体地说,这一建议解决了以下问题。- 它将开发新的数学模型,精确有效地表征概率网络的拓扑特性。(比较分析)当至少一个生物网络是概率性的时,它将开发一个允许比较生物网络的框架。描述生物网络相互作用中的不确定性的含义是一个计算上有趣和具有挑战性的问题。主要的困难是,概率的相互作用产生指数数量的替代网络拓扑结构。该项目的核心是一种基于概率生成函数的新型数学技术。这种技术将网络结构上的一系列问题减少到多项式上的操作,从而产生非常有效的算法。该项目将使用这种技术来解决对齐概率生物网络的问题。更广泛的影响:许多应用程序遵循类似于生物网络的交互模式。无线网络、传感器网络、社交网络和国土安全只是几个例子。这些应用程序的一个关键共同属性是定义它们的交互是概率事件。该项目将使研究这样的网络,从而将有助于回答基本的问题,如:什么是两个社交网络之间的相似模式?病毒通过给定的无线网络传播的速度有多快?即使在互动是概率性的情况下,也能准确有效地进行。该项目也将产生教育影响。作为该项目的一部分,PI将招募和培训一名研究生。最后,在这个项目中开发的代码将作为一个优秀的教育工具,分析和查询数据的广泛的应用程序,其中数据库由一组相互作用的实体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tamer Kahveci其他文献

Bioinformatics Original Paper Markers Improve Clustering of Cgh Data
生物信息学原始论文标记改善 Cgh 数据的聚类
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jun Liu;Sanjay Ranka;Tamer Kahveci
  • 通讯作者:
    Tamer Kahveci
Characterization of probabilistic signaling networks through signal propagation
通过信号传播表征概率信号网络
Functional similarities of reaction sets in metabolic pathways
代谢途径中反应组的功能相似性
Enzymatic target identification with dynamic states
动态酶促目标识别
A method to assess COVID-19 infected numbers in Italy during peak pandemic period
评估大流行高峰期间意大利 COVID-19 感染人数的方法

Tamer Kahveci的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tamer Kahveci', 18)}}的其他基金

CIF: Small: Novel biologically inspired methods for analyzing multilayer networks
CIF:小型:用于分析多层网络的受生物学启发的新颖方法
  • 批准号:
    2111679
  • 财政年份:
    2021
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
ABI Innovation: Querying Massive Dynamic Biological Network Databases
ABI创新:查询海量动态生物网络数据库
  • 批准号:
    1262451
  • 财政年份:
    2013
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CAREER: New Technologies for Querying Pathway Databases
职业:查询路径数据库的新技术
  • 批准号:
    0845439
  • 财政年份:
    2009
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant
EMT/BSSE: Biological networks as a communication model for entities with complex interactions
EMT/BSSE:生物网络作为具有复杂交互的实体的通信模型
  • 批准号:
    0829867
  • 财政年份:
    2008
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant

相似海外基金

Education DCL: EAGER: Teaching Privacy via Stakeholder Modeling
教育 DCL:EAGER:通过利益相关者建模教授隐私
  • 批准号:
    2335625
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
EAGER: IMPRESS-U: Modeling and Forecasting of Infection Spread in War and Post War Settings Using Epidemiological, Behavioral and Genomic Surveillance Data
EAGER:IMPRESS-U:使用流行病学、行为和基因组监测数据对战争和战后环境中的感染传播进行建模和预测
  • 批准号:
    2412914
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Reliable Monitoring and Predictive Modeling for Safer Future Smart Transportation Structures
合作研究:EAGER:可靠的监控和预测建模,打造更安全的未来智能交通结构
  • 批准号:
    2329801
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Reliable Monitoring and Predictive Modeling for Safer Future Smart Transportation Structures
合作研究:EAGER:可靠的监控和预测建模,打造更安全的未来智能交通结构
  • 批准号:
    2329802
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Reliable Monitoring and Predictive Modeling for Safer Future Smart Transportation Structures
合作研究:EAGER:可靠的监控和预测建模,打造更安全的未来智能交通结构
  • 批准号:
    2329800
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
EAGER: Scalable Climate Modeling using Message-Passing Recurrent Neural Networks
EAGER:使用消息传递循环神经网络进行可扩展的气候建模
  • 批准号:
    2335773
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
EAGER GERMINATION: Computational Modeling from Scenario Development: A Pedagogy for Generating Novel Research Questions to Address Critical Societal Issues
渴望萌发:情景开发的计算模型:产生新的研究问题以解决关键社会问题的教学法
  • 批准号:
    2203623
  • 财政年份:
    2022
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
EAGER: Machine Learning and Data Assimilation for Discovery of Generalized Fokker-Planck Equation for Radiation Belt Modeling
EAGER:用于发现辐射带建模的广义福克-普朗克方程的机器学习和数据同化
  • 批准号:
    2211345
  • 财政年份:
    2022
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
EAGER: Modeling and Control of COVID-19 Transmission in Indoor Environments
EAGER:室内环境中 COVID-19 传播的建模和控制
  • 批准号:
    2114439
  • 财政年份:
    2021
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
EAGER International Type II: Sustainable International Collaboration in Spatiotemporal Modeling of Human Mobility and Contagion Dynamics for COVID-19
EAGER International Type II:针对 COVID-19 的人类流动性和传染动力学时空建模的可持续国际合作
  • 批准号:
    2119334
  • 财政年份:
    2021
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了