EAGER: Scalable Climate Modeling using Message-Passing Recurrent Neural Networks

EAGER:使用消息传递循环神经网络进行可扩展的气候建模

基本信息

  • 批准号:
    2335773
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Real-world climate models have often been heavily reliant on large-scale physics-driven climate models involving millions of unknown parameters and sparse real-world measurements to accurately calibrate these models. This proposal aims to develop Message Passing Recurrent Neural Networks (MPRNN), a deep graph neural framework for accurate, scalable and efficient climate modeling from sparse spatio-temporal sensor measurements. Unlike fine-grained physics based climate models that model continuous behavior across space and time, MPRNNs leverage a discrete, distributed collection of heterogeneous recurrent neural networks established at different spatial nodes that simulate the underlying physics-based model and communicate using message passing algorithms to generate real-time spatio-temporal climate maps. This proposal makes fundamental contributions across several sub-disciplines including computer science, complex systems, and climate sciences including: (i) designing scalable graph machine learning frameworks for modeling complex climate systems, (ii) simulating underlying partial differential equations based physics-informed spatio-temporal models using message passing algorithms and graph neural networks, and (iii) designing a general purpose library for efficiently implementing MPRNN based simulators for complex climate systems. This proposal aims to demonstrate the efficacy of MPRNN on multiple climate modeling efforts including modeling gravity waves, environmental pollution forecasting and understanding the localized impact of climate variations in dense urban environments. This proposal builds upon prior work by the investigators that provides a baseline implementation of MPRNN for pollution forecasting and gravity wave modeling. This line of work has a broader impact on various stakeholders of climate research, including climate modeling researchers and policy experts in tackling important issues like climate change, air pollution and gravity waves. By incorporating physics-based domain structure into deep graph models, this proposal can enable climate experts to effectively emulate the behavior of large physics based simulation models using scalable deep graph based climate models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现实世界的气候模型往往严重依赖于大规模的物理驱动的气候模型,涉及数百万个未知参数和稀疏的现实世界的测量,以准确地校准这些模型。该提案旨在开发消息传递递归神经网络(MPRNN),这是一种深度图神经框架,用于从稀疏时空传感器测量中进行准确,可扩展和高效的气候建模。与基于细粒度物理学的气候模型不同,MPRNN利用在不同空间节点建立的离散分布式异构递归神经网络集合,这些网络模拟基于物理学的基础模型,并使用消息传递算法进行通信,以生成实时时空气候地图。该提案为计算机科学、复杂系统和气候科学等多个子学科做出了重要贡献,包括:(i)设计用于模拟复杂气候系统的可扩展图机器学习框架,(ii)使用消息传递算法和图神经网络模拟基于偏微分方程的物理学时空模型,以及(iii)设计一个通用库,用于有效地实现复杂气候系统的基于MPRNN的模拟器。该提案旨在证明MPRNN在多种气候建模工作中的有效性,包括建模重力波,环境污染预测和了解密集城市环境中气候变化的局部影响。 该提案建立在研究人员之前的工作基础上,该工作为污染预测和重力波建模提供了MPRNN的基线实现。这项工作对气候研究的各个利益相关者产生了更广泛的影响,包括气候建模研究人员和政策专家,以解决气候变化,空气污染和重力波等重要问题。通过将基于物理学的领域结构纳入深度图模型,该提案可以使气候专家能够使用可扩展的基于深度图的气候模型有效地模拟基于物理学的大型模拟模型的行为。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lakshminarayan Subramanian其他文献

Lakshminarayan Subramanian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lakshminarayan Subramanian', 18)}}的其他基金

I-Corps: Privacy aware information systems using contextual integrity principle
I-Corps:使用上下文完整性原则的隐私意识信息系统
  • 批准号:
    1650769
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: A Low-Cost Efficient Wireless Architecture for Rural Network Connectivity
职业:用于农村网络连接的低成本高效无线架构
  • 批准号:
    0845842
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NECO: Designing Intermittency-Aware Networked Systems
合作研究:NECO:设计间歇感知网络系统
  • 批准号:
    0831934
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
  • 批准号:
    MR/Y011686/1
  • 财政年份:
    2025
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
  • 批准号:
    10086990
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
  • 批准号:
    2319913
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
  • 批准号:
    2335583
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: Building a Scalable and Polymorphic Cyberinfrastructure for Diverse Research and Education Needs at Illinois State University
CC* 网络基础设施:为伊利诺伊州立大学的多样化研究和教育需求构建可扩展和多态的网络基础设施
  • 批准号:
    2346712
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了