CAREER: Deformations in statistics, cosmology and image analysis

职业:统计、宇宙学和图像分析中的变形

基本信息

  • 批准号:
    1252795
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Smooth invertible transformations, or deformations, are fast becoming important tools in modern data analysis. The nonlinear nature of deformations makes these objects extremely powerful while at the same time making them challenging to estimate and theoretically explore. This proposal is dedicated to the development and theoretical understanding of deformations applied to three specific areas of research: statistics, cosmology and image analysis. The theoretical properties of estimated deformations for generating nonparametric and semiparametric statistical estimates are analyzed through a surprising connection with Stein's method. In addition, the investigator focuses on recent results found in the theory of optimal transport, which has the potential to provide a rigorous theoretical foundation for deformable templates. The computational aspects of estimated deformations will utilize a new Euler-Lagrange characterization of a penalized maximum likelihood estimate, which can significantly relieve the typical computational burden associated with estimation. One consequence will be to make these methods available for widespread use by statistical practitioners in a broad range of problems: nonparametric and semiparametric density estimation, estimating gravitational lensing in cosmology and posterior sampling techniques, to name a few. Another intellectual merit of this proposal are the scientific ramifications of two new proposed deformation estimates of weak lensing of the cosmic microwave background (CMB): a wavelet/Slepian quadratic estimator and a new Bayesian lensing estimator. Gravitational lensing studies have become one of the most successful tools for probing the nature of dark matter. The precise estimation of lensing is important for a number of reasons including, but not limited to, understanding cosmic structure, constraining cosmological parameters and detecting gravity waves. The investigator proposes to uses wavelets and Slepian multi-tapers to adapt the quadratic estimate to local foreground contaminants and sky cuts, which are ubiquitous features in most modern cosmological surveys. The investigator proposes a new Bayesian estimator which has the potential to dramatically change the way gravitational lensing studies are done and how they are integrated within other astronomical surveys.Smooth invertible transformations, or deformations, are fast becoming important tools in modern data analysis. They have been used with spectacular success in the field of computational anatomy where time varying vector field flows which generate deformations are used to statistically analyze medical fMRI images and quantify abnormal morphological structure. In cosmology, deformations are used to model gravitational distortions of the cosmic microwave background from dark matter density fluctuations, and have resulted in a deeper understanding of cosmic structure. Even though these important tools are becoming integrated in modern scientific methods, the statistical properties of estimated deformations have been largely unexplored. This proposal is dedicated to the development and theoretical understanding of deformations applied to three specific areas of research: statistics, cosmology and image analysis. The tools resulting from this project will be useful, not only in statistics, but also in other branches of science and technology ranging from genetics to machine learning. In the field of physics, for example, the potential scientific progress resulting from gravitational lensing estimation could a have broad impact on scientific understanding and the future of scientific research. Moreover, it is becoming increasingly important to train graduate and undergraduate students with the tools necessary to successfully navigate interdisciplinary work, and who are prepared for independent research. The interdisciplinary nature of the proposal will foster a culture of collaboration that will reach the fundamentals of statistical education and will deepen ties with statistics and other physical sciences. In addition, through the integration of research and education, the proposal will teach both graduate and undergraduate students research skills. The result will be two fold. First, it will train graduate students to become creative independent researchers who can contribute within an academic environment. Second, it will educate undergraduates to navigate a work environment which values creative independent investigation.
平滑可逆变换或变形正迅速成为现代数据分析中的重要工具。变形的非线性性质使这些物体非常强大,同时使它们难以估计和理论探索。该提案致力于发展和理论理解变形应用于三个特定的研究领域:统计学,宇宙学和图像分析。产生非参数和半参数统计估计的估计变形的理论性质进行了分析,通过一个令人惊讶的连接与斯坦的方法。此外,研究人员重点关注最佳运输理论中发现的最新结果,该理论有可能为可变形模板提供严格的理论基础。估计变形的计算方面将利用一个新的欧拉-拉格朗日特征的惩罚最大似然估计,这可以显着减轻典型的计算负担与估计。结果之一将是使这些方法可广泛用于统计从业者在广泛的问题:非参数和半参数密度估计,估计宇宙学和后验抽样技术中的引力透镜,仅举几例。这一建议的另一个智力上的优点是两个新提出的宇宙微波背景辐射(CMB)的弱透镜变形估计的科学后果:小波/Slepian二次估计和一个新的贝叶斯透镜估计。引力透镜研究已经成为探索暗物质本质的最成功的工具之一。对透镜效应的精确估计是重要的,原因有很多,包括但不限于理解宇宙结构、约束宇宙学参数和探测重力波。研究人员建议使用小波和Slepian多锥,以适应当地的前景污染物和天空切割,这是最现代的宇宙学调查中无处不在的功能,二次估计。研究人员提出了一种新的贝叶斯估计,它有可能极大地改变引力透镜研究的方式,以及它们如何与其他天文调查相结合。平滑可逆变换或变形正在迅速成为现代数据分析的重要工具。 它们已经在计算解剖学领域取得了巨大的成功,在计算解剖学领域中,产生变形的时变矢量场流被用于统计分析医学fMRI图像并量化异常形态结构。在宇宙学中,形变被用来模拟来自暗物质密度波动的宇宙微波背景的引力扭曲,并导致了对宇宙结构的更深入理解。尽管这些重要的工具正在融入现代科学方法,但估计变形的统计特性在很大程度上尚未探索。该提案致力于发展和理论理解变形应用于三个特定的研究领域:统计学,宇宙学和图像分析。该项目产生的工具不仅在统计学方面,而且在从遗传学到机器学习的其他科学和技术分支中都将是有用的。例如,在物理学领域,引力透镜估计带来的潜在科学进步可能对科学理解和科学研究的未来产生广泛影响。此外,培养研究生和本科生成功驾驭跨学科工作所需的工具,以及为独立研究做好准备,变得越来越重要。该建议的跨学科性质将促进一种合作文化,这种文化将触及统计教育的基础,并将加深与统计和其他自然科学的联系。此外,通过研究和教育的整合,该提案将教授研究生和本科生的研究技能。结果将是双重的。首先,它将培养研究生成为创造性的独立研究人员,他们可以在学术环境中做出贡献。第二,它将教育大学生驾驭一个重视创造性独立调查的工作环境。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isotropic covariance functions on graphs and their edges
图及其边上的各向同性协方差函数
  • DOI:
    10.1214/19-aos1896
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anderes, Ethan;Møller, Jesper;Rasmussen, Jakob G.
  • 通讯作者:
    Rasmussen, Jakob G.
Sampling-based inference of the primordial CMB and gravitational lensing
基于采样的原始宇宙微波背景和引力透镜推理
  • DOI:
    10.1103/physrevd.102.123542
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Millea, Marius;Anderes, Ethan;Wandelt, Benjamin D.
  • 通讯作者:
    Wandelt, Benjamin D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ethan Anderes其他文献

Ethan Anderes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ethan Anderes', 18)}}的其他基金

Statistical Methods for Detection of Primordial Gravitational Waves
原初引力波探测的统计方法
  • 批准号:
    1812199
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Local Likelihood Estimation for Nonstationary Random Fields
非平稳随机场的局部似然估计
  • 批准号:
    1007480
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship in the Mathematical Sciences
数学科学博士后研究奖学金
  • 批准号:
    0503227
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Fellowship

相似海外基金

Reaching new frontiers of quantum fields and gravity through deformations
通过变形达到量子场和引力的新前沿
  • 批准号:
    DP240101409
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
  • 批准号:
    2304797
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
New Rules for Coupled Severe Plastic Deformations, Phase Transformations, and Structural Changes in Metals under High Pressure
高压下金属耦合严重塑性变形、相变和结构变化的新规则
  • 批准号:
    2246991
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Laparoscopic surgical dynamic navigation using maximum likelihood estimation of organ deformations
使用器官变形最大似然估计的腹腔镜手术动态导航
  • 批准号:
    23H00480
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Clarification of Time-Dependent Deformations Mechanisms and Development of Countermeasures in Tunnels Excavated in Swelling Ground
膨胀土中开挖隧道随时间变形机制的阐明及对策的制定
  • 批准号:
    23K04023
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Buckly-grains: a model system for elucidating interplay of extreme deformations and reconfigurations
Buckly-grains:用于阐明极端变形和重构相互作用的模型系统
  • 批准号:
    22KF0084
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Models for Galois deformations and Applications
职业:伽罗瓦变形模型和应用
  • 批准号:
    2237237
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Symmetry-restored two-centre self-consistent approach to fission with arbitrary deformations, orientations, and distance of fragments
具有任意变形、方向和碎片距离的对称性恢复的两中心自洽裂变方法
  • 批准号:
    ST/W005832/1
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
  • 批准号:
    EP/V053787/1
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
  • 批准号:
    2212148
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了