CAREER: Maass Forms, Modular Forms, and Applications in Number Theory
职业:马斯形式、模形式以及数论中的应用
基本信息
- 批准号:1252815
- 负责人:
- 金额:$ 43.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports research at the intersection of number theory, combinatorics, and Lie theory. In particular, the P.I. seeks to determine more precise relationships and interplay between weak Maass forms and their generalizations, (non-holomorphic) Jacobi forms, and combinatorial q-hypergeometric series. The major project objectives include a study of quantum modular forms, vertex operator algebra trace functions and graded dimensions, and the automorphic properties of combinatorial q-series. The P.I. will additionally integrate a number of educational and outreach programs at all levels into the award objectives. Namely, the P.I. has begun a collaboration with the New Haven Public Schools, and will continue to develop a mathematics enrichment program for elementary and middle school students. The P.I. will also act as faculty advisor to the Yale University-New Haven chapter of MATHCOUNTS Outreach, an undergraduate arm of the national organization which promotes mathematics in New Haven Public Schools. The P.I. also seeks to enhance research and educational opportunities for graduate students, undergraduate students, and postdoctoral fellows, including women and girls in mathematics at all levels, through research collaboration, mentoring, and outreach programs. Number theory is one of the oldest branches of mathematics, and continues to be a field of extensive and active research today. Modular forms have played many fundamental roles; they are central to the proof of Fermat's Last Theorem, the Langlands program, the Riemann hypothesis, and the Birch and Swinnerton-Dyer conjecture, for example, and yield applications in combinatorics, cryptography, mathematical physics, and many other areas. The P.I. will study natural relatives of modular forms, namely weak Maass forms and their generalizations. While recent developments have been made, a comprehensive theory is lacking. The proposed research seeks to contribute to the understanding of the roles of these functions not only within number theory and modular forms, but also combinatorics and Lie theory.
该奖项支持在数论,组合学和李理论的交叉研究。特别是,P.I.试图确定更精确的关系和弱马斯形式和它们的推广,(非全纯)雅可比形式和组合q-超几何级数之间的相互作用。主要的计画目标包括量子模形式、顶点算子代数迹函数和分次维数的研究,以及组合q-级数的自守性质。 私家侦探此外,还将把各级教育和推广计划纳入奖励目标。 也就是私家侦探已经开始与纽黑文公立学校合作,并将继续为中小学生开发数学丰富计划。 私家侦探他还将担任耶鲁大学纽黑文分校的数学外展组织的教师顾问,该组织是促进纽黑文公立学校数学的国家组织的本科生分支。私家侦探还寻求通过研究合作、指导和外联方案,为研究生、本科生和博士后研究员,包括各级数学领域的妇女和女孩,增加研究和教育机会。 数论是数学最古老的分支之一,今天仍然是广泛而活跃的研究领域。模形式扮演了许多基本的角色;它们是费马大定理、朗兰兹纲领、黎曼假设、伯奇和斯温纳顿-戴尔猜想等证明的核心,并在组合学、密码学、数学物理和许多其他领域产生应用。私家侦探将研究模形式的自然亲属,即弱马斯形式及其推广。 虽然最近取得了进展,但缺乏全面的理论。 拟议的研究旨在帮助理解这些功能的作用,不仅在数论和模块化的形式,而且组合学和李群理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda Folsom其他文献
Periodic partial theta functions and q-hypergeometric knot multisums as quantum Jacobi forms
量子雅可比形式的周期性偏 theta 函数和 q 超几何结多重和
- DOI:
10.1016/j.jmaa.2023.127727 - 发表时间:
2023 - 期刊:
- 影响因子:1.3
- 作者:
Amanda Folsom - 通讯作者:
Amanda Folsom
Quasimodular forms and $$s\ell (m|m)^\wedge $$ characters
拟模形式与\(s\ell (m|m)^\wedge\)特征
- DOI:
10.1007/s11139-014-9621-4 - 发表时间:
2014-10-21 - 期刊:
- 影响因子:0.700
- 作者:
Kathrin Bringmann;Amanda Folsom;Karl Mahlburg - 通讯作者:
Karl Mahlburg
Modularity and the distinct rank function
- DOI:
10.1007/s11139-009-9213-x - 发表时间:
2010-01-30 - 期刊:
- 影响因子:0.700
- 作者:
Amanda Folsom - 通讯作者:
Amanda Folsom
Quantum q-series and mock theta functions
量子 q 级数和模拟 theta 函数
- DOI:
10.1007/s40687-024-00447-w - 发表时间:
2024 - 期刊:
- 影响因子:1.2
- 作者:
Amanda Folsom;David Metacarpa - 通讯作者:
David Metacarpa
Correction to: Quasimodular forms and $$s\ell (m\vert m)^{\wedge }$$ characters
- DOI:
10.1007/s11139-018-0069-9 - 发表时间:
2018-09-18 - 期刊:
- 影响因子:0.700
- 作者:
Kathrin Bringmann;Amanda Folsom;Karl Mahlburg - 通讯作者:
Karl Mahlburg
Amanda Folsom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amanda Folsom', 18)}}的其他基金
RUI: Harmonic Maass Forms and Quantum Modular Forms
RUI:谐波马斯形式和量子模形式
- 批准号:
2200728 - 财政年份:2022
- 资助金额:
$ 43.7万 - 项目类别:
Standard Grant
RUI: Harmonic Maass Forms, Mock Modular Forms, and Quantum Modular Forms: Theory and Applications
RUI:谐波马斯形式、模拟模块化形式和量子模块化形式:理论与应用
- 批准号:
1901791 - 财政年份:2019
- 资助金额:
$ 43.7万 - 项目类别:
Continuing Grant
CAREER: Maass Forms, Modular Forms, and Applicati
职业:Maass 表格、模块化表格和应用
- 批准号:
1449679 - 财政年份:2014
- 资助金额:
$ 43.7万 - 项目类别:
Continuing Grant
Weak Maass forms, mock theta functions, q-hypergeometric series, and applications
弱马斯形式、模拟 theta 函数、q 超几何级数和应用
- 批准号:
1049553 - 财政年份:2010
- 资助金额:
$ 43.7万 - 项目类别:
Standard Grant
Weak Maass forms, mock theta functions, q-hypergeometric series, and applications
弱马斯形式、模拟 theta 函数、q 超几何级数和应用
- 批准号:
0969122 - 财政年份:2010
- 资助金额:
$ 43.7万 - 项目类别:
Standard Grant
相似国自然基金
GL(n)上的Hecke-Maass尖形式的Hecke特征值的分布
- 批准号:11871344
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
相似海外基金
RUI: Harmonic Maass Forms and Quantum Modular Forms
RUI:谐波马斯形式和量子模形式
- 批准号:
2200728 - 财政年份:2022
- 资助金额:
$ 43.7万 - 项目类别:
Standard Grant
Harmonic Maass Forms, "Moonshine," and Arithmetic Statistics
谐波马斯形式、“Moonshine”和算术统计
- 批准号:
2055118 - 财政年份:2021
- 资助金额:
$ 43.7万 - 项目类别:
Standard Grant
Computational aspects of Maass cusp forms
马斯尖点形式的计算方面
- 批准号:
2271345 - 财政年份:2019
- 资助金额:
$ 43.7万 - 项目类别:
Studentship
RUI: Harmonic Maass Forms, Mock Modular Forms, and Quantum Modular Forms: Theory and Applications
RUI:谐波马斯形式、模拟模块化形式和量子模块化形式:理论与应用
- 批准号:
1901791 - 财政年份:2019
- 资助金额:
$ 43.7万 - 项目类别:
Continuing Grant
Maass Forms in Algebra, Arithmetic Geometry, Combinatorics, Representation Theory, and String Theory
代数、算术几何、组合学、表示论和弦理论中的马斯形式
- 批准号:
1601306 - 财政年份:2016
- 资助金额:
$ 43.7万 - 项目类别:
Continuing Grant
CAREER: Maass Forms, Modular Forms, and Applicati
职业:Maass 表格、模块化表格和应用
- 批准号:
1449679 - 财政年份:2014
- 资助金额:
$ 43.7万 - 项目类别:
Continuing Grant
Sutudy of modular forms by Koecher-Maass series
Koecher-Maass 系列的模块化形式研究
- 批准号:
25800021 - 财政年份:2013
- 资助金额:
$ 43.7万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A transfer operator approach to Maass cusp forms and the Selberg zeta function
Maass 尖点形式和 Selberg zeta 函数的传递算子方法
- 批准号:
EP/K000799/1 - 财政年份:2013
- 资助金额:
$ 43.7万 - 项目类别:
Research Grant
Weak Maass forms, mock theta functions, q-hypergeometric series, and applications
弱马斯形式、模拟 theta 函数、q 超几何级数和应用
- 批准号:
1049553 - 财政年份:2010
- 资助金额:
$ 43.7万 - 项目类别:
Standard Grant