CAREER: Novel Determinants of Motility and Chemotaxis in Sinorhizobium meliloti

职业生涯:苜蓿中华根瘤菌运动性和趋化性的新决定因素

基本信息

项目摘要

Nitrogen is the most limiting nutrient for plant growth. While chemically synthesized inorganic nitrogen fertilizers are effective in increasing crop yields, they are costly and also have a negative impact on the environment, especially on aquatic ecosystems. In contrast, sustainable agriculture relies on biological nitrogen fixation as an economically attractive and ecologically viable source of new nitrogen. The conversion of molecular nitrogen into ammonia is performed by bacteria (Rhizobia) that live in symbiosis with leguminous plants such as peas, soy beans, and alfalfa. The research will be carried out using the symbiotic model system, the nitrogen-fixing soil bacterium Sinorhizobium meliloti (S. meliloti). The process of chemotaxis enables motile rhizobia to preferentially move in the soil towards host plant roots and supports efficient interaction between symbiosis partners. Many motile bacteria are propelled by means of rotating flagella, driven by a powerful, self-assembling nanomachine. The unique flagellar motor and the specially adapted chemotaxis system of S. meliloti make cells more efficient at maneuvering in the viscous soil environment, leading to better survival and optimal interaction with their host plant alfalfa. Previous research uncovered several novel molecular mechanisms governing chemotactic responses and motility in S. meliloti, thereby setting the stage for an in-depth analysis of the underlying molecular events. The overarching goal of this project is to analyze the specific adaptations that occurred in S. meliloti motility and chemotaxis due to the soil habitat and communication with its plant host. The first objective of the research analyzes the roles of two novel proteins in the response of S. meliloti to quickly changing environmental signals, which is essential for bacterial survival. The second objective determines the cellular concentrations and enzymatic activities of key chemotaxis components, allowing prediction of bacterial behavior in the interaction with alfalfa crop. The third objective will identify the function of newly discovered flagellar motor components in facilitating effective movement of S. meliloti in the soil and towards symbiosis partners. This research will lead to the discovery of significant bacterial properties and impact current understanding of how bacterial symbionts respond to plant signals and efficiently move through soil.Broader Impacts The project directly benefits future agricultural and environmental issues for society. By enhancing understanding of the cues that bacterial symbionts use to efficiently interact with their host crop, the research will impact biological nitrogen fixation and thus crop yields and reduce the use of detrimental synthetic fertilizers. The project will also vertically integrate research activities with educational activities through the development of an undergraduate classroom exercise addressing currently open research questions, which will transform into scientific discoveries in the research laboratory. The existing, successful outreach program of the Microbiology Club of Virginia Tech will be expanded to rural, underdeveloped communities of Appalachia. Outreach activities in the form of interactive lectures and hands-on activities will promote scientific awareness across the educational spectrum, including a local 4-H Agricultural Club and rural elementary schools. Studies of motility and chemotaxis can be demonstrated easily and will allow the development of innovative, inquiry-based microbiology lessons with High School science teachers, a valuable strategy for effective learning. Collaboration with Novozymes? BioAgricultural Group will give Virginia Tech students the opportunity not only to experience basic research approaches at the university and applied research in industry through merged collaborative training programs, but also to increase their chances for recruitment into professional careers. Overall, this project integrates research and education through the fusion of classroom and laboratory research, hands-on outreach activities in rural communities, and internships in industry, which will promote student engagement and transform student learning and will permanently stimulate student's interest in science.
氮素是植物生长最受限制的养分。虽然化学合成的无机氮肥在提高作物产量方面是有效的,但它们的成本很高,而且对环境,特别是对水生生态系统也有负面影响。相比之下,可持续农业依赖于生物固氮,作为一种经济上有吸引力和生态上可行的新氮源。分子氮转化为氨是由与豆科植物共生的细菌(根瘤菌)完成的,如豌豆、大豆和紫花苜蓿。本研究将利用共生模式系统--土壤固氮细菌苜蓿中华根瘤菌(Sinorhizobium Meliloti(S.Meliloti))进行研究。趋化性的过程使可移动的根瘤菌能够优先在土壤中向宿主植物的根移动,并支持共生伙伴之间的有效相互作用。许多可移动的细菌是通过旋转的鞭毛推动的,由一个强大的、自组装的纳米机器驱动。紫花苜蓿独特的鞭毛马达和特殊适应的趋化系统使细胞在粘性土壤环境中更有效地移动,导致更好的生存和与寄主紫花苜蓿的最佳相互作用。以前的研究发现了几种控制苜蓿趋化反应和运动性的新的分子机制,从而为深入分析潜在的分子事件奠定了基础。本项目的总体目标是分析由于土壤生境和与植物寄主的沟通而发生的对草地早熟禾运动性和趋化性的特殊适应。这项研究的第一个目标是分析两种新的蛋白质在苜蓿链霉菌对快速变化的环境信号的反应中所起的作用,环境信号对细菌的生存至关重要。第二个目标确定了关键趋化成分的细胞浓度和酶活性,从而能够预测细菌在与紫花苜蓿作物相互作用中的行为。第三个目标将确定新发现的鞭毛马达成分在促进苜蓿根结线虫在土壤中有效移动和向共生伙伴移动方面的功能。这项研究将导致发现重要的细菌特性,并影响目前对细菌共生体如何响应植物信号并在土壤中高效移动的理解。广泛的影响该项目直接造福于未来的农业和社会环境问题。通过加强对细菌共生体用于与宿主作物有效互动的线索的理解,这项研究将影响生物固氮,从而影响作物产量,并减少有害合成肥料的使用。该项目还将通过制定一项本科生课堂练习,将研究活动与教育活动垂直结合起来,解决目前悬而未决的研究问题,这些问题将转化为研究实验室的科学发现。弗吉尼亚理工大学微生物俱乐部现有的、成功的推广计划将扩展到阿巴拉契亚地区欠发达的农村社区。以互动讲座和实践活动的形式开展的外联活动将提高教育领域的科学意识,包括当地的4-H农业俱乐部和农村小学。对运动性和趋化性的研究可以很容易地证明,并将允许与高中科学教师一起开发创新的、基于探究的微生物学课程,这是有效学习的一个有价值的策略。与Novozymes合作?生物农业集团将为弗吉尼亚理工大学的学生提供机会,不仅可以通过合并的合作培训计划体验大学的基础研究方法和工业应用研究,还可以增加他们进入专业职业生涯的机会。总体而言,该项目通过融合课堂和实验室研究、农村社区实践推广活动和工业实习来整合研究和教育,这将促进学生参与并改变学生的学习,并将永久激发学生对科学的兴趣。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cellular Stoichiometry of Chemotaxis Proteins in Sinorhizobium meliloti
  • DOI:
    10.1128/jb.00141-20
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Arapov, Timofey D.;Saldana, Rafael Castanda;Scharf, Birgit E.
  • 通讯作者:
    Scharf, Birgit E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Birgit Scharf其他文献

Letter to the Editor: Sequential assignment and secondary structure of the 14 kDa chemotactic protein CheY2 from Sinorhizobium meliloti
  • DOI:
    10.1023/a:1011258832165
  • 发表时间:
    2001-03-01
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Hubert Riepl;Birgit Scharf;Rüdiger Schmitt;Hans Robert Kalbitzer;Till Maurer
  • 通讯作者:
    Till Maurer
Cryo-EM of bacterial flagellar filaments with screw-like surfaces and outer domain sheaths
  • DOI:
    10.1016/j.bpj.2021.11.2084
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Mark A. Kreutzberger;Richard Sobe;Amber B. Sauder;Sharanya Chatterjee;Fengbin Wang;Volker Kiessling;Vincent Conticello;Gad Frankel;Melissa Kendall;Birgit Scharf;Edward H. Egelman
  • 通讯作者:
    Edward H. Egelman
Spatiotemporal Model for Pattern Formation in Phage-Bacteria System
  • DOI:
    10.1016/j.bpj.2017.11.3665
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Xiaochu Li;Floricel Gonzalez;Birgit Scharf;Jing Chen
  • 通讯作者:
    Jing Chen

Birgit Scharf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Birgit Scharf', 18)}}的其他基金

Conference: 2023 Sensory Transduction in Microorganisms GRC/GRS: Microbial Signaling: From Molecular Mechanisms to Key Roles in Complex Environments
会议:2023 微生物感觉转导 GRC/GRS:微生物信号传导:从分子机制到复杂环境中的关键作用
  • 批准号:
    2400749
  • 财政年份:
    2023
  • 资助金额:
    $ 70.39万
  • 项目类别:
    Standard Grant
Collaborative Research: Infection mechanisms of bacteriophages targeting motile bacteria
合作研究:噬菌体针对运动细菌的感染机制
  • 批准号:
    2054392
  • 财政年份:
    2021
  • 资助金额:
    $ 70.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chemotactic signaling in Sinorhizobium meliloti symbiotic plant host interaction
合作研究:苜蓿中华根瘤菌共生植物宿主相互作用中的趋化信号传导
  • 批准号:
    2128232
  • 财政年份:
    2021
  • 资助金额:
    $ 70.39万
  • 项目类别:
    Standard Grant
Specificity of chemotaxis-driven motility in Sinorhizobium meliloti host interaction
苜蓿中华根瘤菌宿主相互作用中趋化驱动运动的特异性
  • 批准号:
    1817652
  • 财政年份:
    2018
  • 资助金额:
    $ 70.39万
  • 项目类别:
    Continuing Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Determinants of Longitudinal Progression of Adipose Tissue Inflammation in Individuals at High-Risk for Type 2 Diabetes: Novel Insights from Metabolomic Profiling
2 型糖尿病高危个体脂肪组织炎症纵向进展的决定因素:代谢组学分析的新见解
  • 批准号:
    488898
  • 财政年份:
    2023
  • 资助金额:
    $ 70.39万
  • 项目类别:
    Operating Grants
Determinants of Longitudinal Progression of Adipose Tissue Inflammation in Individuals at High-Risk for Type 2 Diabetes: Novel Insights from Metabolomic Profiling
2 型糖尿病高危个体脂肪组织炎症纵向进展的决定因素:代谢组学分析的新见解
  • 批准号:
    484082
  • 财政年份:
    2023
  • 资助金额:
    $ 70.39万
  • 项目类别:
    Operating Grants
Host and Viral Determinants of Orthobunyavirus Vertical Transmission: Novel Model Systems to Understand the Mechanisms of Congenital Disease in Humans and Ruminants
正布尼亚病毒垂直传播的宿主和病毒决定因素:了解人类和反刍动物先天性疾病机制的新模型系统
  • 批准号:
    10589470
  • 财政年份:
    2023
  • 资助金额:
    $ 70.39万
  • 项目类别:
Turning on Persistence: Novel Molecular Determinants that Underpin P. gingivalis' Intracellular Survival In Epithelial Cells
开启持久性:支持牙龈卟啉单胞菌在上皮细胞内存活的新型分子决定因素
  • 批准号:
    10836756
  • 财政年份:
    2023
  • 资助金额:
    $ 70.39万
  • 项目类别:
Novel Molecular Determinants of Insulin Clearance
胰岛素清除率的新分子决定因素
  • 批准号:
    10609503
  • 财政年份:
    2022
  • 资助金额:
    $ 70.39万
  • 项目类别:
Characterizing the biological determinants of magnetic resonance contrast using novel myelin imaging techniques in the central nervous system
使用中枢神经系统中新型髓磷脂成像技术表征磁共振对比的生物决定因素
  • 批准号:
    547278-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 70.39万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Harmonizing Hospital-Based Violence Intervention Programs with a Novel Medical-Legal Partnership for Equity in the Social and Structural Determinants of Health – the HVIP-MLP Model
将基于医院的暴力干预计划与新型医疗法律伙伴关系相协调,以实现健康的社会和结构性决定因素的公平 — HVIP-MLP 模型
  • 批准号:
    10613225
  • 财政年份:
    2022
  • 资助金额:
    $ 70.39万
  • 项目类别:
Novel Molecular Determinants of Insulin Clearance
胰岛素清除率的新分子决定因素
  • 批准号:
    10446927
  • 财政年份:
    2022
  • 资助金额:
    $ 70.39万
  • 项目类别:
Harmonizing Hospital-Based Violence Intervention Programs with a Novel Medical-Legal Partnership for Equity in the Social and Structural Determinants of Health – the HVIP-MLP Model -- Supplement
将基于医院的暴力干预计划与新型医疗法律伙伴关系相协调,以实现健康的社会和结构性决定因素的公平性 — HVIP-MLP 模型 -- 补充
  • 批准号:
    10842140
  • 财政年份:
    2022
  • 资助金额:
    $ 70.39万
  • 项目类别:
Novel Determinants for Progression of Non-Alcoholic Fatty Liver Disease to Hepatocellular Carcinoma and Other Health Outcomes
非酒精性脂肪肝进展为肝细胞癌和其他健康结果的新决定因素
  • 批准号:
    10483196
  • 财政年份:
    2021
  • 资助金额:
    $ 70.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了