CAREER: Accelerated simulation of nonlinear solids with applications to human anatomy modeling in interactive virtual environments
职业:非线性实体的加速模拟及其在交互式虚拟环境中的人体解剖学建模的应用
基本信息
- 批准号:1253598
- 负责人:
- 金额:$ 47.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Digital models of human anatomy, already common elements of motion pictures and computer games, are now increasingly being incorporated into diverse "serious" applications such as medical diagnostics, surgical planning and vehicle design. Both current and emerging applications demand improved photorealism, enhanced biomechanical accuracy, better subject specificity and faster simulation algorithms. As these demands often outpace the evolution of computer hardware, new algorithms for biomechanical modeling and simulation are necessary to ensure that upcoming computational platforms are utilized to the best of their capacity.With respect to computational performance, physics-based simulations of virtual materials in interactive applications have demonstrated inferior performance in terms of cost per degree of freedom when compared to large-scale simulations of similar phenomena in HPC settings. This is partly attributable to the regularity and economy of scale associated with large models, compared to the pronounced irregularity and heterogeneity at lower resolutions. But it is also due to the fact that the commonly-used algorithms and data structures for interactive virtual materials reflect design compromises with respect to features, accuracy and parallelization potential. In this project the PI will endeavor to show that it is possible to reinvent both algorithms and data structures so as to achieve optimal computational efficiency for nonlinear virtual materials even under the constraints of interactive simulation, and also to achieve improvements of orders of magnitude in runtime, resolution and accuracy. The work will leverage expertise from computer systems, scientific computing, continuum mechanics and numerical analysis.Biomechanical simulation has provided a great opportunity for transformative advances in medical practice using virtual models of the human body for disease prevention and treatment. These emerging applications mandate an increased level of attention to the unique demands of interactivity, resolution and anatomical accuracy for clinical uses of biomechanical modeling and simulation. Algorithmic improvements that yield two or three orders of magnitude have the potential to transform clinical training or operation planning tasks from off-line processes to practical interactive experiences. In addition to being a valuable opportunity to improve patient care, the use of anatomical modeling as a testing ground for effective and scalable simulation algorithms will have a lasting legacy that extends well beyond the clinical field. The high degree of irregularity in shape and function that is inherent in human tissues yields an excellent and challenging benchmark for the validity of material models, the accuracy of discretization techniques and the efficiency of numerical solvers. Considerations such as the accommodation of topology change and facilitation of parallel processing make simulating virtual nonlinear tissue models an excellent opportunity to refine core computational physics and numerical analysis techniques.Broader Impacts: Computer simulations have been established as an educational tool in many fields (e.g., driving and flight training), helping to improve the safety record of operators without risk of physical harm. They present a great opportunity to affect the quality of patient care, considering the fact that most surgical residents currently sharpen their skills while operating on actual patients. Anatomical simulators could also reduce the need for animal testing, and help with knowledge transfer across the international clinical community, especially in developing countries. As part of this project, the PI will develop new academic course offerings that will serve to connect computer engineers, applied mathematicians, and clinical practitioners.
人体解剖学的数字模型,已经是电影和电脑游戏的常见元素,现在正越来越多地被纳入各种“严肃”的应用,如医疗诊断,手术规划和车辆设计。 当前和新兴的应用都需要改进的真实感,增强的生物力学精度,更好的主题特异性和更快的模拟算法。 由于这些需求往往超过计算机硬件的发展,因此需要新的生物力学建模和仿真算法,以确保即将到来的计算平台能够最大限度地利用它们的能力。在交互式应用中的虚拟材料的基于物理的模拟已经证明,与大的,在HPC设置中对类似现象进行规模模拟。 这部分归因于与大型模型相关的规则性和规模经济,而在较低分辨率下则存在明显的不规则性和异质性。 但这也是由于交互式虚拟材料的常用算法和数据结构反映了在功能,准确性和并行化潜力方面的设计妥协。 在这个项目中,PI将奋进证明,即使在交互式仿真的约束下,也可以重新设计算法和数据结构,以实现非线性虚拟材料的最佳计算效率,并在运行时间,分辨率和准确性方面实现数量级的改进。 这项工作将利用计算机系统、科学计算、连续介质力学和数值分析的专业知识。生物力学模拟为利用人体虚拟模型进行疾病预防和治疗的医疗实践的变革性进步提供了一个很好的机会。 这些新兴的应用程序的任务增加的关注水平的交互性,分辨率和解剖精度的生物力学建模和仿真的临床用途的独特需求。 产生两个或三个数量级的化学改进有可能将临床培训或操作规划任务从离线过程转变为实际的交互式体验。 除了是改善患者护理的宝贵机会之外,使用解剖建模作为有效且可扩展的模拟算法的测试场还将产生持久的遗产,远远超出临床领域。 人体组织中固有的形状和功能的高度不规则性为材料模型的有效性、离散化技术的准确性和数值求解器的效率提供了一个优秀且具有挑战性的基准。 考虑到诸如拓扑变化的适应性和并行处理的便利性,使得模拟虚拟非线性组织模型成为改进核心计算物理和数值分析技术的极好机会。驾驶和飞行培训),帮助改善操作员的安全记录,而不会有人身伤害的风险。 他们提出了一个很好的机会,影响病人护理的质量,考虑到事实上,大多数外科住院医生目前提高他们的技能,而实际的病人。 解剖模拟器还可以减少对动物试验的需求,并有助于在国际临床界,特别是在发展中国家进行知识转移。 作为该项目的一部分,PI将开发新的学术课程,以连接计算机工程师,应用数学家和临床医生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eftychios Sifakis其他文献
A symmetric multigrid-preconditioned Krylov subspace solver for Stokes equations
- DOI:
10.1016/j.camwa.2024.08.018 - 发表时间:
2024-10-15 - 期刊:
- 影响因子:
- 作者:
Yutian Tao;Eftychios Sifakis - 通讯作者:
Eftychios Sifakis
Algorithmic aspects of the simulation and control of computer generated human anatomy models
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Eftychios Sifakis - 通讯作者:
Eftychios Sifakis
Learning a Generalized Physical Face Model From Data
从数据中学习广义的物理人脸模型
- DOI:
10.48550/arxiv.2402.19477 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lingchen Yang;G. Zoss;Prashanth Chandran;Markus Gross;B. Solenthaler;Eftychios Sifakis;D. Bradley - 通讯作者:
D. Bradley
Fast Sparse 3D Convolution Network with VDB
使用 VDB 的快速稀疏 3D 卷积网络
- DOI:
10.48550/arxiv.2311.02762 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Fangjun Zhou;Anyong Mao;Eftychios Sifakis - 通讯作者:
Eftychios Sifakis
Physical simulation for animation and visual effects
动画和视觉效果的物理模拟
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Christopher J. Hughes;R. Grzeszczuk;Eftychios Sifakis;Daehyun Kim;Sanjeev Kumar;Andrew P. Selle;J. Chhugani;Matthew J. Holliman;Yen - 通讯作者:
Yen
Eftychios Sifakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eftychios Sifakis', 18)}}的其他基金
Collaborative Research: HCC: Medium: Computational Design of Complex Fluidic Systems
合作研究:HCC:媒介:复杂流体系统的计算设计
- 批准号:
2106768 - 财政年份:2021
- 资助金额:
$ 47.62万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Learning Active Physics-Based Models from Data
III:小:协作研究:从数据中学习基于物理的主动模型
- 批准号:
2008584 - 财政年份:2020
- 资助金额:
$ 47.62万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Scalable and Topologically Versatile Material Point Methods for Complex Materials in Multiphysics Simulation
AF:小型:协作研究:多物理场仿真中复杂材料的可扩展且拓扑通用的质点方法
- 批准号:
1812944 - 财政年份:2018
- 资助金额:
$ 47.62万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Inverse Anatomical Modeling of the Face for Orthognathic Surgery
CHS:媒介:合作研究:正颌手术面部逆向解剖建模
- 批准号:
1763638 - 财政年份:2018
- 资助金额:
$ 47.62万 - 项目类别:
Standard Grant
SCH: EXP: Connecting surgical training software solutions on portable clients to interactive dynamics engines on the cloud
SCH:EXP:将便携式客户端上的手术培训软件解决方案连接到云上的交互式动态引擎
- 批准号:
1407282 - 财政年份:2014
- 资助金额:
$ 47.62万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: An accelerated numerical solver framework for simulation of solid-fluid dynamics
RI:小型:协作研究:用于模拟固液动力学的加速数值求解器框架
- 批准号:
1423064 - 财政年份:2014
- 资助金额:
$ 47.62万 - 项目类别:
Standard Grant
相似海外基金
AI-accelerated optical simulation for fast timing nuclear imaging
用于快速核成像的人工智能加速光学模拟
- 批准号:
10744626 - 财政年份:2023
- 资助金额:
$ 47.62万 - 项目类别:
Collaborative Research: Elements: GPU-accelerated First-Principles Simulation of Exciton Dynamics in Complex Systems
合作研究:要素:复杂系统中激子动力学的 GPU 加速第一性原理模拟
- 批准号:
2209858 - 财政年份:2022
- 资助金额:
$ 47.62万 - 项目类别:
Standard Grant
Accelerated atomistic simulation of dislocations in nuclear materials
核材料位错的加速原子模拟
- 批准号:
RGPIN-2018-04463 - 财政年份:2022
- 资助金额:
$ 47.62万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Elements: GPU-accelerated First-Principles Simulation of Exciton Dynamics in Complex Systems
合作研究:要素:复杂系统中激子动力学的 GPU 加速第一性原理模拟
- 批准号:
2209857 - 财政年份:2022
- 资助金额:
$ 47.62万 - 项目类别:
Standard Grant
Accelerated atomistic simulation of dislocations in nuclear materials
核材料位错的加速原子模拟
- 批准号:
RGPIN-2018-04463 - 财政年份:2021
- 资助金额:
$ 47.62万 - 项目类别:
Discovery Grants Program - Individual
General-Domain, Scalable, Accelerated Spectral Partial Differential Equation Solvers and Applications in Simulation and Design
通用域、可扩展、加速谱偏微分方程求解器及其在仿真和设计中的应用
- 批准号:
2109831 - 财政年份:2021
- 资助金额:
$ 47.62万 - 项目类别:
Continuing Grant
Accelerated atomistic simulation of dislocations in nuclear materials
核材料位错的加速原子模拟
- 批准号:
RGPIN-2018-04463 - 财政年份:2020
- 资助金额:
$ 47.62万 - 项目类别:
Discovery Grants Program - Individual
Multiscale ab initio QM/MM and Machine Learning Methods for Accelerated Free Energy Simulations
用于加速自由能模拟的多尺度从头 QM/MM 和机器学习方法
- 批准号:
10696727 - 财政年份:2019
- 资助金额:
$ 47.62万 - 项目类别:
Accelerated atomistic simulation of dislocations in nuclear materials
核材料位错的加速原子模拟
- 批准号:
RGPIN-2018-04463 - 财政年份:2019
- 资助金额:
$ 47.62万 - 项目类别:
Discovery Grants Program - Individual
Accelerated atomistic simulation of dislocations in nuclear materials
核材料位错的加速原子模拟
- 批准号:
DGECR-2018-00334 - 财政年份:2018
- 资助金额:
$ 47.62万 - 项目类别:
Discovery Launch Supplement














{{item.name}}会员




