AI-accelerated optical simulation for fast timing nuclear imaging
用于快速核成像的人工智能加速光学模拟
基本信息
- 批准号:10744626
- 负责人:
- 金额:$ 60.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectAlgorithmsAutomobile DrivingClinicalCollaborationsCollectionCommunitiesConsumptionCustomDataDevelopmentDimensionsDiscipline of Nuclear MedicineEventExplosionFamilyGeometryGrantImageImage AnalysisImaging technologyIndividualInternationalIonizing radiationLightMethodologyMethodsModelingMonte Carlo MethodNanostructuresNatureNoiseOpticsPerformancePhotonsPhysicsPositron-Emission TomographyProcessProductionPythonsRadioResearchResearch PersonnelResolutionSignal TransductionSpeedStructureSystemTechnologyTimeTrainingUnited States National Institutes of HealthWorkcommercializationdeep learningdesigndetectorgenerative adversarial networkhigh energy physicsimprovedinnovationlearning materialsnanophotonicnext generationnovelnuclear imagingopen dataparticlephotonicsradiation detectorreconstructionsimulationsimulation softwaresingle photon emission computed tomographytechnology developmenttheranosticstool
项目摘要
Project Summary/ Abstract
Improving quantification at high spatial resolution is driving technology developments in nuclear imaging.
Positron emission tomography (PET) scanners and single photon emission computed tomography (SPECT)
use radiation detectors, which performance can be improved when the image formation process is
understood. Optimizing optical mechanisms such as scintillation or prompt photon emission at the core of
these detectors is essential to advance the technology and is the focus of this proposal. Due to the complexity
of these phenomena and the difficulty to disentangle their components experimentally, research on radiation
detector optics relies on simulations integrating high and low energy physics. No simulators currently offer
the speed and fidelity necessary to understand image formation from the detector to the system.
We propose to develop a radically different AI-based high-fidelity optical modeling framework,
allowing multidimensional optical information to be rapidly generated, collected, and processed at the system
level. By replacing individual photon tracking with a deep-learning approach, we expect to accelerate
simulations by several orders of magnitude in systems involving extensive optical photon tracking, such as
large detectors or fast timing detectors. We organize this R01 proposal in three specific aims focusing on
implementing this framework in the Geant4/GATE simulators and applying it to time-of-flight (TOF)
PET. GATE is a free opensource platform at the forefront of nuclear medicine simulation. We have a track
record of developing optical modeling strategies and created the LUT Davis model. This grant will design and
implement the optiGAN, a custom generative adversarial network (GAN) that will be trained with high-fidelity
simulations based on the LUT Davis model. New light transport features and crystal-photodetector interface
models mixing particle and wave optics will be developed and integrated into the optiGAN (Aims 1 and 2).
We have extensively studied and developed Cerenkov-based radiation detectors, one of the prompt
photon emission mechanisms most pursued to achieve timing resolution below 50 ps and unlock
reconstruction-free PET. To develop prompt photon-based PET systems several questions must be solved:
how to improve the production and transport of these prompt photons with new materials, how to improve
their collection, and how to harness the prompt photon information for fast coincidence timing. These
questions motivate the development of innovative detector optics and algorithms for TOF PET, which we will
investigate with the optiGAN together with experimental and theoretical work (Aims 2 and 3).
The objective of this grant is to enable a leap in detector technology through unprecedented simulation
capabilities and new strategies to leverage fast detectors in nuclear imaging scanners. Developing detector
technology now that enables the next generation of scanners to respond to clinical and research needs of
nuclear medicine is essential, as the integration of these advances requires years before commercialization.
项目总结/摘要
在高空间分辨率下改进量化正在推动核成像技术的发展。
正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)
使用辐射检测器,当图像形成过程被
明白优化光学机制,如闪烁或快速光子发射的核心,
这些探测器对推进技术至关重要,也是本提案的重点。由于复杂性
由于这些现象以及难以通过实验来解开它们的组成部分,
探测器光学依赖于集成高能和低能物理的模拟。目前没有模拟器提供
理解从探测器到系统的图像形成所需的速度和保真度。
我们建议开发一个完全不同的基于AI的高保真光学建模框架,
允许多维光学信息在系统中快速地产生、收集和处理
水平通过用深度学习方法取代单个光子跟踪,我们希望加速
在涉及广泛的光学光子跟踪的系统中,
大型检测器或快速定时检测器。我们将R 01提案分为三个具体目标,重点是
在Geant 4/GATE模拟器中实现该框架,并将其应用于飞行时间(TOF)
彼前GATE是一个处于核医学模拟前沿的免费开源平台。我们有一个轨道
开发光学建模策略的记录,并创建了LUT戴维斯模型。该基金将设计和
实现optiGAN,这是一个定制的生成对抗网络(GAN),将以高保真度进行训练
基于LUT Davis模型的仿真。新的光传输特性和晶体-光电探测器接口
将开发混合粒子和波动光学的模型,并将其纳入optiGAN(目标1和2)。
我们已经广泛研究和开发了基于切伦科夫的辐射探测器,
光子发射机制最追求实现低于50 ps的定时分辨率和解锁
无重建PET。为了开发快速的基于光子的PET系统,必须解决以下几个问题:
如何用新材料改善这些瞬发光子的产生和传输,如何改善
它们的收集,以及如何利用提示光子信息进行快速符合计时。这些
这些问题激发了TOF PET创新探测器光学器件和算法的开发,我们将
与optiGAN一起研究实验和理论工作(目标2和3)。
这项资助的目的是通过前所未有的模拟实现探测器技术的飞跃
在核成像扫描仪中利用快速探测器的能力和新战略。显影检测器
现在的技术,使下一代扫描仪,以响应临床和研究的需要,
核医学是必不可少的,因为这些先进技术的整合需要数年时间才能实现商业化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emilie Roncali其他文献
Emilie Roncali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emilie Roncali', 18)}}的其他基金
Improved optical Monte Carlo simulation through standardization, robustness, and training
通过标准化、鲁棒性和训练改进光学蒙特卡罗模拟
- 批准号:
10584410 - 财政年份:2022
- 资助金额:
$ 60.5万 - 项目类别:
New optical Monte Carlo simulation tools for nuclear medicine
用于核医学的新型光学蒙特卡罗模拟工具
- 批准号:
10307574 - 财政年份:2019
- 资助金额:
$ 60.5万 - 项目类别:
Personalized dosimetry for liver cancer radioembolization using fluid dynamics simulation
使用流体动力学模拟进行肝癌放射栓塞的个性化剂量测定
- 批准号:
9899967 - 财政年份:2019
- 资助金额:
$ 60.5万 - 项目类别:
New optical Monte Carlo simulation tools for nuclear medicine
用于核医学的新型光学蒙特卡罗模拟工具
- 批准号:
10058840 - 财政年份:2019
- 资助金额:
$ 60.5万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 60.5万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 60.5万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 60.5万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 60.5万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 60.5万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 60.5万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 60.5万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 60.5万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 60.5万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 60.5万 - 项目类别:
Research Grant