CAREER:Control of Radiative Thermal Transport Using Nanostructured Materials

职业:利用纳米结构材料控制辐射热传输

基本信息

  • 批准号:
    1253692
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-02-01 至 2018-01-31
  • 项目状态:
    已结题

项目摘要

1253692ShenRadiative thermal transport is of primary importance in various applications such as thermal insulation, energy conversion, thermal signature control and thermal management. Although near-field radiative heat transfer, where the spacing between two surfaces is smaller than the thermal wavelength given by Wien's law, has been demonstrated to exceed blackbody radiation due to the tunneling of evanescent waves, maximizing near-field enhancement between different materials remains challenging. Control of near-field radiative heat transfer will offer significant potential for the development of new radiation cooling and thermal energy conversion technologies. In the far-field, where the gap between two surfaces is much larger than the thermal wavelength, the spectral and directional control of thermal emission at desired frequencies will create low-power coherent infrared sources and enable novel thermal management strategies. The objective of this project is to control radiative thermal transport using nanostructured materials (e.g., metamaterials) in both near- and far-fields. The intellectual merit of this project is in advancing the fundamental knowledge of radiative thermal transport. The novel computational tools developed in this project will overcome the theoretical obstacles in calculating near-field radiation for complex three-dimensional structures, which is critical for accurately predicting the thermal response of nanostructured materials in the near-field. The proposed ultra-sensitive experimental platform, which can resolve a heat flux as small as 100 picowatts, will enable the near-field measurements on a variety of nanostructured materials. For far-field radiation control, this project will demonstrate two transformative scientific phenomena: (i) high-speed modulation of radiative heat fluxes, and (ii) spectral and directional control of thermal emission at desired frequencies. Control of radiative thermal transport in both near- and far-fields will impact a broad range of applications in energy conversion and thermal management. The tunable metamaterials described in this project will make it possible to design better thermophotovoltaic energy conversion systems. The spectral and directional control of thermal emission using metamaterials will create low-power infrared sources and yield flexible, compact and efficient thermal management technologies, especially for cooling spacecrafts. The heat flux modulator can allow the opening and closing of heat transfer at a high rate, which will be extremely useful for developing advanced thermal management strategies. This project will integrate research and education via interactive educational kits, curriculum development, and outreach activities. Two interactive educational kits and their related educational program will be developed to stimulate the students' interests in energy and nanoscience. The local education focuses will be Pittsburgh Science and Technology Academy and Allderdice High School, as well as students at Carnegie Mellon. Broader audiences will be reached at the local events in Pittsburgh including the annual Siemens Competition and the Intel International Science and Engineering Fair. Curriculum innovation at Carnegie Mellon will introduce graduate and undergraduate students to basic principles of energy conversion and the latest research results in radiative thermal transport such as near-field radiation and metamaterials.
辐射热传输在隔热、能量转换、热特征控制和热管理等各种应用中具有重要意义。虽然近场辐射换热,即两个表面之间的间距小于维恩定律给出的热波长,已经被证明由于逝去波的隧穿而超过了黑体辐射,但最大化不同材料之间的近场增强仍然是具有挑战性的。近场辐射换热的控制将为新的辐射冷却和热能转换技术的发展提供巨大的潜力。在远场中,两个表面之间的间距远远大于热波长,对所需频率的热发射进行光谱和方向控制将产生低功率相干红外源,并使新的热管理策略成为可能。该项目的目标是利用纳米结构材料(如超材料)控制近场和远场的辐射热传输。该项目的学术价值在于提高了辐射热传输的基础知识。该项目开发的新型计算工具将克服复杂三维结构近场辐射计算的理论障碍,这对于准确预测纳米结构材料在近场中的热响应至关重要。提出的超灵敏实验平台可以分辨低至100皮瓦的热流,将使各种纳米结构材料的近场测量成为可能。在远场辐射控制方面,该项目将展示两种变革性的科学现象:(1)辐射热通量的高速调制;(2)对所需频率的热辐射进行光谱和定向控制。对近场和远场辐射热传输的控制将影响能量转换和热管理的广泛应用。该项目中描述的可调超材料将使设计更好的热光伏能量转换系统成为可能。利用超材料对热发射进行光谱和定向控制将产生低功率红外源,并产生灵活、紧凑和高效的热管理技术,特别是用于冷却航天器。热流调节器可以高速开启和关闭热传递,这将对开发先进的热管理策略非常有用。该项目将通过互动教育工具包、课程开发和外联活动将研究和教育结合起来。将开发两个互动教育工具包和相关的教育项目,以激发学生对能源和纳米科学的兴趣。当地的教育重点将是匹兹堡科技学院和奥尔德迪斯高中,以及卡内基梅隆大学的学生。匹兹堡的当地活动将接触到更广泛的受众,包括一年一度的西门子大赛和英特尔国际科学与工程博览会。卡内基梅隆大学的课程改革将向研究生和本科生介绍能量转换的基本原理,以及近场辐射和超材料等辐射热传输方面的最新研究成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheng Shen其他文献

Networked Acoustics Around Human Ears
人耳周围的网络声学
Circulating hepatitis B virus RNA: From biology to clinical applications
循环乙型肝炎病毒RNA:从生物学到临床应用
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    13.5
  • 作者:
    Rui Deng;Shi Liu;Sheng Shen;Haitao Guo;Jian Sun
  • 通讯作者:
    Jian Sun
Selective hydroxylation of benzene via enhanced generation and utilization of hydroxyl radicals with CuZnSbO photocatalyst
通过 CuZnSbO 光催化剂增强羟基自由基的生成和利用来选择性羟基化苯
Biomimicking covalent organic frameworks nanocomposite coating for integrated enhanced anticorrosion and antifouling properties of a embiodegradable magnesium stent/em
用于可生物降解镁支架集成增强防腐和防污性能的仿生共价有机框架纳米复合涂层
  • DOI:
    10.1016/j.actbio.2024.04.012
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Rui Zan;Hao Wang;Sheng Shen;Shi Yang;Han Yu;Xiyue Zhang;Xian Zhang;Xiang Chen;Mengxuan Shu;Xiao Lu;Jiazeng Xia;Yaqi Gu;Houbao Liu;Yongping Zhou;Xiaonong Zhang;Tao Suo
  • 通讯作者:
    Tao Suo
552: First-in-human breast imaging study with ultra-low field MRI for compact proton therapy systems
552:针对紧凑型质子治疗系统的超低场MRI的首次人类乳房成像研究
  • DOI:
    10.1016/s0167-8140(24)01136-8
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Friderike K. Longarino;Sheng Shen;Neha Koonjoo;Susu Yan;Rachel B. Jimenez;Matthew S. Rosen;Thomas R. Bortfeld
  • 通讯作者:
    Thomas R. Bortfeld

Sheng Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sheng Shen', 18)}}的其他基金

Nanoplasmonics Mediated Radiative Thermal Transport in Near- and Far-Fields
纳米等离子体介导的近场和远场辐射热传输
  • 批准号:
    1931964
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Net-Shape and Scalable Additive Manufacturing for Thermoelectric Waste Heat Recovery Materials and Devices using Selective Laser Melting
合作研究:使用选择性激光熔化进行热电废热回收材料和设备的净形状和可扩展增材制造
  • 批准号:
    1916110
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

CAREER: Elucidating Biogenic Control of Heterogenous Ice Nucleation
职业:阐明异质冰核的生物控制
  • 批准号:
    2336558
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
  • 批准号:
    2406256
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
  • 批准号:
    2422698
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
  • 批准号:
    2334517
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了