CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation

职业:安全意识数据驱动控制和估计的通用框架

基本信息

项目摘要

This Faculty Early Career Development Program (CAREER) award supports research that enables safe data-driven control and estimation methods for robotics and power systems, thereby promoting the progress of science, advancing prosperity and welfare, and securing the national defense. This research will develop a universal framework for the simultaneous design of control policies and safety measures based on recent advances in the mathematical modeling of dynamical systems. In this context, the intersection between safety, control systems, and data-driven methodologies is still nascent and there are major hurdles to overcome for the adoption and acceptance of the safe data-driven paradigm despite the immense progress in data processing capabilities. This project will solve these challenges through the automatic synthesis of safety-aware control laws for highly complex systems as a function of their real-time input-output information. The outcomes of this work will be well-suited for a variety of applications in engineering, biology, and manufacturing that are of essential significance for the economic development and the competitiveness of the nation on the global stage. The project’s research objectives are complemented by a methodical industry outreach and pedagogical plan aimed at blending research and education, strengthening industry collaboration, and boosting the participation of underrepresented communities for the benefit of society at large.The researched framework leverages the algebraic structure of a novel framework for system representation that systematically encodes its input-output behavior, namely the Chen-Fliess framework. This encoding naturally fits the underpinnings of the data-driven paradigm for control and estimation. This methodology essentially enables the use of algebraic optimization routines on the system’s information, by eliminating the need for a state-space coordinate frame that otherwise will require over-parametrizations that can lead to infeasibility. Consequently, faster and less power-consuming optimization algorithms are researched with the capability of retaining the system’s input-output behavior. Thus, reachability analysis and synthesis of the control barrier functions will then be performed under this algebraic framework to advance these methodologies in the data-driven setting. The specific objectives of this project are to (1) provide an algebraic framework for the analysis and optimization of data-driven control systems, (2) develop input-output reachability analysis in the Chen-Fliess framework, and (3) develop data-driven methods for the synthesis of safe control laws based on reachability analysis and control barrier functions in the Chen-Fliess framework. The researched work will be validated on autonomous vehicles, a multi-robot system performing simultaneous localization and mapping, and a data-driven power system regulation problem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展计划(CAREER)奖项支持为机器人和电力系统提供安全的数据驱动控制和估计方法的研究,从而促进科学进步,促进繁荣和福利,并确保国防。这项研究将基于动力系统数学建模的最新进展,开发一个通用框架,用于同步设计控制策略和安全措施。在这种背景下,安全、控制系统和数据驱动方法之间的交叉仍处于萌芽阶段,尽管数据处理能力取得了巨大进步,但采用和接受安全数据驱动范式仍需克服重大障碍。该项目将通过自动合成高度复杂系统的安全感知控制律作为实时输入输出信息的函数来解决这些挑战。这项工作的成果将非常适合工程、生物学和制造领域的各种应用,这些应用对于国家在全球舞台上的经济发展和竞争力具有至关重要的意义。该项目的研究目标得到了系统性的行业推广和教学计划的补充,旨在将研究和教育相结合,加强行业合作,并促进代表性不足的社区的参与,以造福整个社会。研究的框架利用了一种新颖的系统表示框架的代数结构,该框架系统地编码了其输入输出行为,即 Chen-Fliess 框架。这种编码自然适合数据驱动控制和估计范式的基础。这种方法本质上允许在系统信息上使用代数优化例程,消除了对状态空间坐标系的需要,否则需要过度参数化,从而导致不可行性。因此,人们研究了更快、更省电的优化算法,并且能够保留系统的输入输出行为。因此,控制屏障函数的可达性分析和综合将在这个代数框架下进行,以在数据驱动的环境中推进这些方法。该项目的具体目标是(1)为数据驱动控制系统的分析和优化提供一个代数框架,(2)在Chen-Fliess框架中开发输入输出可达性分析,以及(3)在Chen-Fliess框架中开发基于可达性分析和控制障碍函数的安全控制律综合的数据驱动方法。研究工作将在自动驾驶汽车、执行同步定位和测绘的多机器人系统以及数据驱动的电力系统调节问题上进行验证。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luis Duffaut Espinosa其他文献

Luis Duffaut Espinosa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luis Duffaut Espinosa', 18)}}的其他基金

EAGER/Collaborative Research: Real-Time: Hybrid Control Architectures Combining Physical Models and Real-time Learning
EAGER/协作研究:实时:结合物理模型和实时学习的混合控制架构
  • 批准号:
    1839387
  • 财政年份:
    2018
  • 资助金额:
    $ 58.13万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Universal Design Automation Framework for Analog Integrated Systems
职业:模拟集成系统的通用设计自动化框架
  • 批准号:
    2239033
  • 财政年份:
    2023
  • 资助金额:
    $ 58.13万
  • 项目类别:
    Continuing Grant
MaGPIE - A comprehensive, universal human rights framework for Mass Grave Protection, Investigation & Engagement
MaGPIE - 针对万人坑保护和调查的全面、普遍的人权框架
  • 批准号:
    EP/Y014340/1
  • 财政年份:
    2023
  • 资助金额:
    $ 58.13万
  • 项目类别:
    Research Grant
A Universal Framework for Geometric Information in Product Development
产品开发中几何信息的通用框架
  • 批准号:
    2312175
  • 财政年份:
    2023
  • 资助金额:
    $ 58.13万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology FY 2021: General plasticity kinetics: developing a universal framework of developmental plasticity
2021 财年 NSF 生物学博士后奖学金:一般可塑性动力学:开发发育可塑性的通用框架
  • 批准号:
    2109557
  • 财政年份:
    2021
  • 资助金额:
    $ 58.13万
  • 项目类别:
    Fellowship Award
CNS Core: Small: Towards a universal network verification framework
CNS 核心:小型:迈向通用网络验证框架
  • 批准号:
    1910821
  • 财政年份:
    2019
  • 资助金额:
    $ 58.13万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I (RAISE): A Universal Framework of Micro-Credentials for Nation-Wide Employment
融合加速器第一阶段(RAISE):全国就业微型证书的通用框架
  • 批准号:
    1936947
  • 财政年份:
    2019
  • 资助金额:
    $ 58.13万
  • 项目类别:
    Standard Grant
Universal image processing framework based on machine-learning for bioimage-informatics
基于生物图像信息学机器学习的通用图像处理框架
  • 批准号:
    17K19402
  • 财政年份:
    2017
  • 资助金额:
    $ 58.13万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
PryMe, a Universal Framework to Measure the Strength of Privacy-enhancing Technologies
PryMe,衡量隐私增强技术强度的通用框架
  • 批准号:
    EP/P006752/1
  • 财政年份:
    2017
  • 资助金额:
    $ 58.13万
  • 项目类别:
    Research Grant
CIF: Small: A Framework for Low Latency Universal Compression with Privacy Guarantees
CIF:小型:具有隐私保证的低延迟通用压缩框架
  • 批准号:
    1422358
  • 财政年份:
    2014
  • 资助金额:
    $ 58.13万
  • 项目类别:
    Standard Grant
A universal user interface design framework for business to business collaborative systems
用于企业对企业协作系统的通用用户界面设计框架
  • 批准号:
    131494
  • 财政年份:
    2013
  • 资助金额:
    $ 58.13万
  • 项目类别:
    Feasibility Studies
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了