CAREER: Investigation of thermal phonon scattering processes in solids
职业:研究固体中的热声子散射过程
基本信息
- 批准号:1254213
- 负责人:
- 金额:$ 40.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-02-01 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1254213MinnichHeat conduction is central to numerous and diverse technologies, ranging from power generation, to electronics, to lasers. Increasingly in these applications, heat conduction occurs at scales much less than a micron, comparable to the fundamental length scales of the heat carriers themselves. For example, nanostructured thermoelectrics may contain engineered structures as small as a few nanometers; these nanoscale materials are 50% more efficient at converting heat to electricity than their macroscopic counterparts. However, further advances are difficult to achieve because of a poor understanding of the lattice vibration, or phonon, scattering processes that largely determine a material?s thermal conductivity. Despite over 50 years of investigation, the mean free paths (MFPs) of phonons, which describe how phonons scatter when they interact with other phonons, defects, and nanostructures, are unknown in most materials. This experimental and computational investigation will provide a comprehensive understanding of thermal phonon scattering. Novel experimental methods that have been developed only recently will be used to measure MFP distributions across length scales ranging from nanometers to millimeters. The effect of different scattering mechanisms on specific phonon modes will be obtained by observing the changes in the MFP distribution as mass defects, grain boundaries, nanoprecipitates, and other nanostructures are systematically introduced into the material. Analytical expressions for the MFPs, which are of great utility to researchers in the field, will be created and validated against the experimental results using numerical solutions of the Boltzmann transport equation. This project will advance our scientific knowledge of heat conduction and enable many applications, particularly in the energy field. Scientifically, the investigation will provide a comprehensive understanding of the complex thermal phonon scattering process, which has eluded scientists for decades, as well as experimentally validate fundamental computational predictions of thermal phonon scattering rates. Practically, this research will enable engineers to design materials with precisely tailored thermal conductivities before fabrication rather than by trial-and-error, a major advance over present capabilities. This ability would lead to many applications, such as highly efficient cars that harvest useful electricity from wasted heat in the tailpipe, environmentally friendly refrigerators that do not use any harmful fluids, and electronic devices with reduced power consumption.
1254213 Minnich热传导是众多不同技术的核心,从发电到电子,再到激光。在这些应用中,越来越多的热传导发生在远小于一微米的尺度上,与热载体本身的基本长度尺度相当。例如,纳米结构热电可能包含小到几纳米的工程结构;这些纳米级材料在将热量转化为电能方面比宏观材料高出50%。然而,进一步的进展是很难实现的,因为一个穷人的理解晶格振动,或声子,散射过程,在很大程度上决定了材料?热传导系数。尽管经过50多年的研究,声子的平均自由程(MFP)描述了声子在与其他声子、缺陷和纳米结构相互作用时如何散射,但在大多数材料中仍是未知的。这种实验和计算研究将提供一个全面的了解热声子散射。最近才开发的新实验方法将用于测量从纳米到毫米的长度尺度上的MFP分布。不同的散射机制对特定声子模式的影响将通过观察MFP分布的变化来获得,因为质量缺陷,晶界,纳米沉淀物和其他纳米结构被系统地引入材料中。的MFP,这是非常有用的研究人员在该领域的分析表达式,将创建和验证对实验结果使用的玻尔兹曼输运方程的数值解。该项目将推进我们对热传导的科学知识,并使许多应用成为可能,特别是在能源领域。从科学的角度来看,这项研究将全面了解复杂的热声子散射过程,这是科学家们几十年来一直无法理解的,并通过实验验证热声子散射率的基本计算预测。实际上,这项研究将使工程师能够在制造之前设计出具有精确定制热导率的材料,而不是通过试错法,这是对现有能力的重大进步。这种能力将导致许多应用,例如从排气管中的废热中收集有用电力的高效汽车,不使用任何有害流体的环保冰箱,以及功耗降低的电子设备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Austin Minnich其他文献
Austin Minnich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Austin Minnich', 18)}}的其他基金
EAGER: Quantum Manufacturing: Atomic-layer Etching Manufacturing Processes for High Performance Superconducting Quantum Devices
EAGER:量子制造:高性能超导量子器件的原子层蚀刻制造工艺
- 批准号:
2234390 - 财政年份:2023
- 资助金额:
$ 40.54万 - 项目类别:
Standard Grant
Towards the quantum noise limit in semiconductor microwave amplifiers: a study of hot electron noise
迈向半导体微波放大器的量子噪声极限:热电子噪声的研究
- 批准号:
1911926 - 财政年份:2019
- 资助金额:
$ 40.54万 - 项目类别:
Standard Grant
相似海外基金
CAREER: ERASE-PFAS: Mechanistic Investigation of Thermal Decomposition of Poly- and Perfluoroalkyl Substances in the Soil Environment
职业:ERASE-PFAS:土壤环境中多氟烷基和全氟烷基物质热分解的机理研究
- 批准号:
2320966 - 财政年份:2023
- 资助金额:
$ 40.54万 - 项目类别:
Standard Grant
CAREER: Investigation of Thermal Transport in Moiré Pattern Structured Materials to Push the Extremes of Thermal Modulation
职业:研究莫尔图案结构材料中的热传输以推动热调制的极限
- 批准号:
2145417 - 财政年份:2022
- 资助金额:
$ 40.54万 - 项目类别:
Continuing Grant
CAREER: Fundamental Investigation of the Wave Nature of Lattice Thermal Transport
职业:晶格热传输波性质的基础研究
- 批准号:
2047109 - 财政年份:2021
- 资助金额:
$ 40.54万 - 项目类别:
Continuing Grant
CAREER: ERASE-PFAS: Mechanistic Investigation of Thermal Decomposition of Poly- and Perfluoroalkyl Substances in the Soil Environment
职业:ERASE-PFAS:土壤环境中多氟烷基和全氟烷基物质热分解的机理研究
- 批准号:
2047062 - 财政年份:2021
- 资助金额:
$ 40.54万 - 项目类别:
Standard Grant
CAREER: Investigation of Nanoscale Radiative Heat Transfer for Enhanced Thermal Infrared Energy Conversion and Cooling
职业:研究纳米级辐射传热以增强热红外能量转换和冷却
- 批准号:
1836967 - 财政年份:2019
- 资助金额:
$ 40.54万 - 项目类别:
Standard Grant
CAREER: Investigation of strain and superior functionalization schemes for large enhancement of thermal conductivity in polymer-graphene nanocomposites and binary semiconductors
职业:研究应变和卓越的功能化方案,以大幅提高聚合物-石墨烯纳米复合材料和二元半导体的导热性
- 批准号:
1847129 - 财政年份:2019
- 资助金额:
$ 40.54万 - 项目类别:
Standard Grant
CAREER: Investigation of Nanoscale Radiative Heat Transfer for Enhanced Thermal Infrared Energy Conversion and Cooling
职业:研究纳米级辐射传热以增强热红外能量转换和冷却
- 批准号:
1941743 - 财政年份:2019
- 资助金额:
$ 40.54万 - 项目类别:
Standard Grant
CAREER: Safe, High-Performance Li-Ion Batteries Through a Fundamental Investigation of Thermal Transport in Electrochemical Materials and Interfaces
职业:通过电化学材料和界面热传输的基础研究来实现安全、高性能的锂离子电池
- 批准号:
1554183 - 财政年份:2016
- 资助金额:
$ 40.54万 - 项目类别:
Standard Grant
CAREER: Ultrafast Phonon Dynamics in Complex Nanostructures: Systematic Investigation with Ultrafast Phonon Spectroscopy and Femtosecond Thermal Reflectance Technique
职业:复杂纳米结构中的超快声子动力学:利用超快声子光谱和飞秒热反射技术进行系统研究
- 批准号:
1351881 - 财政年份:2014
- 资助金额:
$ 40.54万 - 项目类别:
Standard Grant
CAREER: Fundamental Investigation and Thermal-Electrical Control of Ion, Fluid, and Biomolecular Transport through Nanochannels
职业:通过纳米通道进行离子、流体和生物分子传输的基础研究和热电控制
- 批准号:
0643583 - 财政年份:2007
- 资助金额:
$ 40.54万 - 项目类别:
Standard Grant