CAREER: Ultrafast Phonon Dynamics in Complex Nanostructures: Systematic Investigation with Ultrafast Phonon Spectroscopy and Femtosecond Thermal Reflectance Technique
职业:复杂纳米结构中的超快声子动力学:利用超快声子光谱和飞秒热反射技术进行系统研究
基本信息
- 批准号:1351881
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-1351881PI: Yaguo Wang, University of Texas at AustinCAREER: Ultrafast Phonon Dynamics in Complex Nanostructures: Systematic Investigation with Ultrafast Phonon Spectroscopy and Femtosecond Thermal Reflectance TechniquePhonons are quantized lattice vibrations and the major heat carriers in many crystalline materials. Our scientific understanding of phonons lags behind that of electrons and photons, mainly because of the difficulties in measuring and manipulating individual phonon. In bulk materials, the phonon transport is purely diffusive and governed by Fourier's Law. In nanostructures, phonons can travel ballistically, scatter at boundaries, interfaces and nanoparticles, and can be localized by quantum confinement effects. When different nanostructures are integrated together, phonon dynamics becomes exceptionally complicated. This research will investigate individual phonon behavior in complex nanostructures with ultrafast phonon spectroscopy and femtosecond time domain thermal reflectance technique. The effect of different nanostructures on specific phonon modes will be examined in detail through a systematic introduction of boundaries, interfaces, nanoparticles, and quantum wells into the material. Phonon lifetime and group velocity will be characterized for specific phonon modes with the ultrafast phonon spectroscopy, and the effect on macroscopic thermal conductivity will be measured by time domain thermal reflectance technique. Quantitative information will be provided about the effects resulting from the degree of lattice-mismatch, superlattice period, nanoparticle size, type and concentration, and the interplay of these mechanisms. The results will be used to validate the predictions from numerical and theoretical studies and bridge the gap between macroscopic thermal property measurements and microscopic phonon properties.This research will address the fundamental heat transport problems encountered by researchers in a wide variety of disciplines: thermoelectrics, quantum cascade lasers, infrared detectors, and nanoelectronics. The new discoveries obtained from this study will be integrated into both graduate and undergraduate courses. This project will prepare next-generation leaders in thermal sciences, ultrafast optics, material science and physics. Outreach activities will include demonstrating research findings in pre-college programs focused on K-12 students, and providing research opportunities to undergraduate women mentored by graduate women. This project will also enhance diversity at University of Texas at Austin by actively recruiting graduate students from under-represented populations, such as women and minorities.
研究方向:复杂纳米结构中的超快声子动力学:基于超快声子光谱学和飞秒热反射技术的系统研究声子是量子化的晶格振动,是许多晶体材料中的主要热载体。我们对声子的科学认识落后于对电子和光子的认识,主要是因为难以测量和操纵单个声子。在块状材料中,声子输运是纯粹扩散的,受傅立叶定律支配。在纳米结构中,声子可以弹道传播,在边界、界面和纳米粒子上散射,并且可以通过量子限制效应进行局域化。当不同的纳米结构集成在一起时,声子动力学变得异常复杂。本研究将利用超快声子光谱和飞秒时域热反射技术研究复杂纳米结构中单个声子的行为。不同纳米结构对特定声子模式的影响将通过系统地将边界、界面、纳米粒子和量子阱引入材料中来详细研究。利用超快声子光谱技术表征特定声子模式下的声子寿命和群速度,并利用时域热反射技术测量对宏观导热系数的影响。将提供关于晶格失配程度、超晶格周期、纳米颗粒大小、类型和浓度以及这些机制的相互作用所产生的影响的定量信息。该结果将用于验证数值和理论研究的预测,并弥合宏观热特性测量和微观声子特性之间的差距。这项研究将解决研究人员在各种学科中遇到的基本热传输问题:热电学、量子级联激光器、红外探测器和纳米电子学。从这项研究中获得的新发现将被整合到研究生和本科课程中。该项目将培养热科学、超快光学、材料科学和物理领域的下一代领导者。拓展活动将包括展示以K-12学生为重点的大学预科项目的研究成果,并为由研究生女性指导的本科女性提供研究机会。该项目还将通过积极从女性和少数族裔等代表性不足的群体中招收研究生,增强德克萨斯大学奥斯汀分校的多样性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yaguo Wang其他文献
Simultaneous Determination of Thermal Conductivity and Heat Capacity in Thin Films with Picosecond Transient Thermoreflectance and Picosecond Laser Flash
利用皮秒瞬态热反射和皮秒激光闪光同时测定薄膜中的热导率和热容
- DOI:
10.1080/15567265.2023.2255243 - 发表时间:
2023 - 期刊:
- 影响因子:4.1
- 作者:
Zefang Ye;Janghan Park;Yanyao Zhang;Xianghai Meng;Matthew Disiena;Sanjay K. Banerjee;Jung‐Fu Lin;Yaguo Wang - 通讯作者:
Yaguo Wang
All-optical switch with 1 ps response time enabled by graphene oxide infiltrated subwavelength grating waveguide
通过氧化石墨烯渗透亚波长光栅波导实现 1 ps 响应时间的全光开关
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Xiaochuan Xu;Zeyu Pan;B. Jia;Yaguo Wang;Ray T. Chen - 通讯作者:
Ray T. Chen
Laser sintering of copper nanoparticles: A simplified model for fluence estimation and validation
铜纳米粒子的激光烧结:用于注量估计和验证的简化模型
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
N. Roy;W. Jou;He Feng;Jihoon Jeong;Yaguo Wang;M. Cullinan - 通讯作者:
M. Cullinan
Self-Pulsing in Hybrid Subwavelength Grating Metamaterial Ring Resonator
混合亚波长光栅超材料环形谐振器中的自脉冲
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Xiaochuan Xu;Yang Wang;Jiaxin Chen;Wanxin Li;Yaguo Wang;T. Michinobu;Yong Yao;Ray T. Chen - 通讯作者:
Ray T. Chen
Modeling the influences of Ag or Au nanoparticles on the solar energy absorption and photocatalytic properties of N-TiO2
模拟 Ag 或 Au 纳米颗粒对 N-TiO2 太阳能吸收和光催化性能的影响
- DOI:
10.1016/j.optcom.2017.09.080 - 发表时间:
2018 - 期刊:
- 影响因子:2.4
- 作者:
S. Qu;Mao;Yaguo Wang;Tingjie Song - 通讯作者:
Tingjie Song
Yaguo Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yaguo Wang', 18)}}的其他基金
Collaborative Research: Cross-plane Heat Conduction in 2D Materials under Large Compressive Strain
合作研究:大压缩应变下二维材料的横向热传导
- 批准号:
2211660 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Dual-Step Sintering of Metal Nanoparticles with Femtosecond Laser Pulses
飞秒激光脉冲双步烧结金属纳米颗粒
- 批准号:
1934357 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
基于Ultrafast-VPCR技术的半夏药材及其成药快速基因检测体系的建立以及应用
- 批准号:81973434
- 批准年份:2019
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
- 批准号:
2338798 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Photo-induced Ultrafast Electron-nuclear Dynamics in Molecules
职业:分子中光致超快电子核动力学
- 批准号:
2340570 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Ultrafast tracking of physiological processes in the human eye
超快速跟踪人眼的生理过程
- 批准号:
DP240103352 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing
通过超快激光制造的自由形状石英光纤
- 批准号:
MR/X034615/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Ultrafast Infrared Spectroscopy Facility
超快红外光谱设备
- 批准号:
LE240100004 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
- 批准号:
2326788 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
- 批准号:
EP/Y032659/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
RII Track-4:NSF: Ultrafast Gripping and Release Mechanisms in Slingshot Spider Legs
RII Track-4:NSF:弹弓蜘蛛腿中的超快抓取和释放机制
- 批准号:
2327439 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
THz frequency structures for particle accelerators: Realising ultrafast electron beam manipulation and diagnostics
粒子加速器的太赫兹频率结构:实现超快电子束操纵和诊断
- 批准号:
ST/Y510002/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
NSF-BSF: Ultrafast Laser-Electron Heating for Tailoring the Emittance and Charge of High-Energy Proton Beams
NSF-BSF:超快激光电子加热用于调整高能质子束的发射率和电荷
- 批准号:
2308860 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant














{{item.name}}会员




