Collaborative Research: Reacting Tracers in a Turbulent Mixed Layer
合作研究:在湍流混合层中反应示踪剂
基本信息
- 批准号:1258995
- 负责人:
- 金额:$ 40.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Reactive tracers such as carbonate chemical species and plankton play key roles in determining the biogeochemistry of the ocean, which is the largest reservoir of carbon in the Earth system active on short timescales. These tracers react primarily in the mixed layer, where air-sea exchange occurs and light is plentiful for photosynthesis. The mixing of these tracers is parameterized in large-scale, mesoscale eddy-resolving simulations of the global carbon cycle and climate, but so far the coupling between their reactions and flow physics is not represented. Understanding this coupling in the upper ocean is complicated by the presence of turbulent processes spanning a wide range of scales, including vertical mixing by meter-scale Langmuir turbulence and kilometer-scale stirring by submesoscale eddies, fronts, and filaments. As such, reactive tracers are not fully mixed to the point of having zero gradients at all scales, even in the mixed layer. This leads to heterogeneity, or ?patchiness,? in the spatial distribution of tracers; the degree and spectral properties of this heterogeneity are determined by the interactions between turbulent mixing and biological or chemical reactions. Characterizing the effects of realistic mixed layer turbulence on reactive tracers with different reaction dynamics and rates is a fundamental challenge in understanding the interplay between physical processes and biological and chemical species in the ocean.Intellectual Merit: This project will use large eddy simulations (LES) to study the effects of multiscale turbulent processes on reactive tracers in the oceanic mixed layer, spanning scales from meters (Langmuir) to tens of kilometers (submesoscale fronts and instabilities). The investigators will examine mixed layer tracer dynamics by drawing on their prior experience studying Langmuir turbulence, submesoscale features, reacting flows, and the global carbon cycle. Relatively little work on turbulence and oceanic tracer reactions over this range of scales is extant, yet small-scale turbulent mixing has time scales similar to those of chemical processes (such as CO2 hydration), and submesoscale eddies evolve on time scales similar to those of plankton blooms. Many prior studies of reactive tracers have relied on simple flow fields (such as two-dimensional or quasi-geostrophic turbulence). This project will address the full three dimensional complexity of upper ocean turbulence. At first, relatively simple tracer reactions will be used, building toward more realistic biological and chemical models. This approach will allow fundamental turbulence-tracer interactions to be understood before introducing overly complex reaction models. This project will bring together concepts from fundamental turbulence physics, chemical and biological reacting flows, and physical oceanography.Broader Impacts: Three graduate students will be trained at the nexus of oceanic physics, biology, and chemistry. Insights obtained from this project will be directly relevant to gas and carbon budgets at the interface between the atmosphere and ocean, as well as biological dynamics in the upper ocean. Both of these processes play a critical role in the organic and inorganic global carbon cycles, and thus have a direct impact on understanding and predicting atmospheric CO2 levels and climate change. Although this study will be focused on fundamental processes, with an emphasis on physical oceanography and idealized reaction models, there are clear applications to problems in chemical and biological oceanography. In particular, with the numerical framework, diagnostics, and fundamental understanding developed in the current study, the study of reactive tracers can be extended in the future to more complicated models of biological and chemical reactions in the upper ocean. The team of investigators is also experienced in more applied aspects of modeling and parameterization development, and so will ensure the practical utility of the fundamental work. The data obtained from these simulations will be made publicly available to support further research on reactive tracers in the upper ocean.
碳酸盐化学物种和浮游生物等活性示踪剂在确定海洋的生物地球化学方面发挥了关键作用,海洋是地球系统中最大的碳库,在短时间尺度上活动。这些示踪剂主要在混合层中反应,那里发生了海-气交换,光线充足,有利于光合作用。这些示踪剂的混合在全球碳循环和气候的大规模、中尺度涡旋解析模拟中被参数化,但到目前为止,它们的反应和流动物理之间的耦合还没有被描述出来。对上层海洋中这种耦合的理解是复杂的,因为存在跨越广泛尺度的湍流过程,包括米级朗缪尔湍流的垂直混合和亚中尺度涡旋、锋面和细丝的千米级搅动。因此,反应性示踪剂没有完全混合到在所有尺度上都具有零梯度的程度,即使在混合层中也是如此。这导致了异质性,或?斑驳,?在示踪剂的空间分布中,这种非均质性的程度和光谱性质由湍流混合和生物或化学反应之间的相互作用决定。描述真实混合层湍流对具有不同反应动力学和反应速率的反应示踪剂的影响是理解物理过程和海洋中生物和化学物种之间相互作用的根本挑战。智力优势:该项目将使用大涡模拟(LES)来研究从米(朗缪尔)到几十公里(亚中尺度锋面和不稳定性)的多尺度湍流过程对海洋混合层中反应示踪物的影响。研究人员将利用他们先前研究朗缪尔湍流、亚中尺度特征、反应流动和全球碳循环的经验来检查混合层示踪动力学。关于这一范围内的湍流和海洋示踪反应的工作相对较少,但小尺度湍流混合的时间尺度类似于化学过程(如二氧化碳水合作用),亚中尺度涡旋的演变时间尺度类似于浮游生物水华的时间尺度。以前对反应性示踪剂的许多研究都依赖于简单的流场(如二维或准地转湍流)。这个项目将解决上层海洋湍流的全部三维复杂性。首先,将使用相对简单的示踪反应,建立更现实的生物和化学模型。这种方法将允许在引入过于复杂的反应模型之前了解基本的湍流-示踪剂相互作用。这个项目将汇集基础湍流物理、化学和生物反应流以及物理海洋学的概念。广泛的影响:三名研究生将在海洋物理、生物和化学的结合部接受培训。从该项目中获得的见解将与大气和海洋交界处的气体和碳收支以及上层海洋的生物动力学直接相关。这两个过程在有机和无机全球碳循环中都发挥着关键作用,因此对理解和预测大气二氧化碳水平和气候变化有直接影响。虽然这项研究将侧重于基本过程,重点是物理海洋学和理想化的反应模式,但在化学和生物海洋学问题上有明显的应用。特别是,随着目前研究中发展的数值框架、诊断和基本理解,反应性示踪剂的研究将来可以扩展到更复杂的上层海洋生物和化学反应模型。研究人员团队在建模和参数化开发的更多应用方面也具有丰富的经验,因此将确保基础工作的实用性。从这些模拟中获得的数据将公之于众,以支持对上层海洋中反应性示踪剂的进一步研究。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BFM17 v1.0: a reduced biogeochemical flux model for upper-ocean biophysical simulations
BFM17 v1.0:用于上层海洋生物物理模拟的简化生物地球化学通量模型
- DOI:10.5194/gmd-14-2419-2021
- 发表时间:2021
- 期刊:
- 影响因子:5.1
- 作者:Smith, Katherine M.;Kern, Skyler;Hamlington, Peter E.;Zavatarelli, Marco;Pinardi, Nadia;Klee, Emily F.;Niemeyer, Kyle E.
- 通讯作者:Niemeyer, Kyle E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Hamlington其他文献
Peter Hamlington的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Hamlington', 18)}}的其他基金
CAREER: Structure and Dynamics of Highly Turbulent Premixed Combustion
职业:高湍流预混燃烧的结构和动力学
- 批准号:
1847111 - 财政年份:2019
- 资助金额:
$ 40.14万 - 项目类别:
Standard Grant
Collaborative Research: Submesoscale-Resolving Large Eddy Simulations Using Reduced Biogeochemical Models
合作研究:使用简化的生物地球化学模型进行亚尺度解析大涡模拟
- 批准号:
1924636 - 财政年份:2019
- 资助金额:
$ 40.14万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
UNS: Collaborative Research: Turbulent Flame Structure of Cavity Stabilized Reacting Shear Layers: Effects of Flow Compressibility, Heat Release, and Finite-rate Kinetics
UNS:合作研究:腔稳定反应剪切层的湍流火焰结构:流动压缩性、放热和有限速率动力学的影响
- 批准号:
1510222 - 财政年份:2015
- 资助金额:
$ 40.14万 - 项目类别:
Continuing Grant
UNS: Collaborative Research: Turbulent Flame Structure of Cavity Stabilized Reacting Shear Layers: Effects of Flow Compressibility, Heat Release, and Finite-rate Kinetics
UNS:合作研究:腔稳定反应剪切层的湍流火焰结构:流动压缩性、放热和有限速率动力学的影响
- 批准号:
1511791 - 财政年份:2015
- 资助金额:
$ 40.14万 - 项目类别:
Continuing Grant
UNS: Collaborative Research: Turbulent Flame Structure of Cavity Stabilized Reacting Shear Layers: Effects of Flow Compressibility, Heat Release, and Finite-rate Kinetics
UNS:合作研究:腔稳定反应剪切层的湍流火焰结构:流动压缩性、放热和有限速率动力学的影响
- 批准号:
1511520 - 财政年份:2015
- 资助金额:
$ 40.14万 - 项目类别:
Continuing Grant
Collaborative Research: Reacting Tracers in a Turbulent Mixed Layer
合作研究:在湍流混合层中反应示踪剂
- 批准号:
1258907 - 财政年份:2013
- 资助金额:
$ 40.14万 - 项目类别:
Standard Grant
Collaborative Research: Reacting to the Past Pedagogy for Science Education
合作研究:对过去的科学教育教学法的反应
- 批准号:
0920441 - 财政年份:2009
- 资助金额:
$ 40.14万 - 项目类别:
Standard Grant
Collaborative research on the Reacting to the Past Pedagogy for science education
科学教育对过去教育学的反应合作研究
- 批准号:
0920384 - 财政年份:2009
- 资助金额:
$ 40.14万 - 项目类别:
Standard Grant
ENGINEERING RESEARCH EQUIPMENT: Picosecond Diagnostics in Reacting Flows Using a Mode-Locked Ti:Sapphire Laser
工程研究设备:使用锁模钛宝石激光器对反应流进行皮秒诊断
- 批准号:
9412178 - 财政年份:1994
- 资助金额:
$ 40.14万 - 项目类别:
Standard Grant
ENGINEERING RESEARCH EQUIPMENT: Double Pulsed Laser System for Simultaneous PIV and PLIF Studies of Mixing Flows and Chemically Reacting Flows
工程研究设备:用于同时对混合流和化学反应流进行 PIV 和 PLIF 研究的双脉冲激光系统
- 批准号:
9411551 - 财政年份:1994
- 资助金额:
$ 40.14万 - 项目类别:
Standard Grant
Research Initiation Award: Thermal Stresses in Chemically Reacting Media
研究启动奖:化学反应介质中的热应力
- 批准号:
9308813 - 财政年份:1993
- 资助金额:
$ 40.14万 - 项目类别:
Standard Grant
Research Experience for Undergraduates Sites - Experiments in High Speed, Chemically Reacting Flows
本科生现场研究经验 - 高速化学反应流实验
- 批准号:
9300552 - 财政年份:1993
- 资助金额:
$ 40.14万 - 项目类别:
Standard Grant