Thermodynamic Formalism and Dynamical Systems Arising from Geometry

热力学形式主义和几何产生的动力系统

基本信息

  • 批准号:
    1259311
  • 负责人:
  • 金额:
    $ 5.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The key aims of this research are to further develop the theory of thermodynamic formalism and to apply powerful techniques from ergodic theory and dynamical systems to examples of special geometric interest. Thermodynamic formalism is a powerful and versatile tool in the study of the global statistical properties of dynamical systems, originally motivated by ideas from statistical mechanics. Key goals of the project are (1) to study the evolution of dynamical invariants of negatively curved manifolds under Ricci flow, (2) to develop thermodynamic techniques to study the beta-transformation and related maps, (3) to develop thermodynamic formalism for the Teichmueller flow. Since the 1930?s, a key motivation in the development of the ergodic theory of dynamical systems has been the study of problems in geometry. This project belongs to that rich tradition, and covers a selection of problems where state of the art techniques will produce new results at the intersection of dynamical systems and geometry. The investigation of the effect of Ricci flow on dynamical invariants of negative curvature manifolds combines the powerful techniques of smooth dynamical systems with state of the art innovations from the Ricci flow literature. The beta-transformation, which has been studied extensively since 1957, arises naturally in number theory. New results are now possible due to a recent breakthrough co-authored by the Principal Investigator. Teichmueller theory is an area of intensive current research at the intersection of geometry, topology, number theory and dynamics. There is great scope for the development of thermodynamic formalism for systems arising in this context, and the results will be useful for a variety of geometric and statistical applications. The project will both advance the theory of dynamical systems and build connections between different branches of mathematics (dynamics, PDE, number theory, Teichmueller theory). The focus of this research is on deriving fundamental pure results, so there is significant potential that the tools developed here will yield future applications in dynamics, geometry and beyond. In addition, the project has a number of educational benefits. The Principle Investigator will (1) disseminate the research through publications and talks, (2) integrate research with teaching by delivering mini-courses and seminars for graduate students and advanced undergraduates, (3) work with Penn State Outreach to promote learning and participation at the K-12 level, with particular emphasis on underrepresented groups.
本研究的主要目的是进一步发展热力学形式主义理论,并将遍历理论和动力系统的强大技术应用于特殊几何兴趣的例子。热力学形式论是研究动力系统的全局统计性质的一种强大而通用的工具,它最初受到统计力学思想的启发。该项目的主要目标是:(1)研究负弯曲流形在Ricci流下的动力学不变量的演化;(2)开发研究β变换和相关映射的热力学技术;(3)建立Teichmueller流的热力学形式。从1930年代开始?在动力学系统遍历理论的发展中,一个关键的动机是对几何问题的研究。这个项目属于这一丰富的传统,涵盖了一系列问题,其中最先进的技术将在动力系统和几何的交叉点产生新的结果。Ricci流对负曲率流形动力学不变量的影响的研究结合了光滑动力系统的强大技术和Ricci流文献的最新创新。自1957年以来被广泛研究的β变换自然出现在数论中。由于最近由首席研究员共同撰写的突破,新的结果现在可能成为可能。Teichmueller理论是目前在几何学、拓扑学、数论和动力学交叉领域进行深入研究的一个领域。在这种情况下产生的系统的热力学形式主义有很大的发展空间,其结果将对各种几何和统计应用有用。该项目将推进动力系统理论,并建立数学不同分支(动力学、偏微分方程、数论、泰奇穆勒理论)之间的联系。这项研究的重点是得出基本的纯结果,因此这里开发的工具有很大的潜力,未来将在动力学、几何等领域得到应用。此外,该项目还有许多教育方面的好处。首席研究员将(1)通过出版物和演讲传播研究成果,(2)通过为研究生和高级本科生提供迷你课程和研讨会,将研究与教学结合起来,(3)与宾夕法尼亚州立大学外展中心合作,促进K-12阶段的学习和参与,特别强调代表性不足的群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Thompson其他文献

Understanding the factors critical to the TIG welding of Cu components in bar wound electric motors
  • DOI:
    10.1016/j.jmapro.2023.05.051
  • 发表时间:
    2023-08-25
  • 期刊:
  • 影响因子:
  • 作者:
    Chen Zhou;Hongliang Wang;Thomas Perry;Daniel Thompson
  • 通讯作者:
    Daniel Thompson
Additional qualifications of trainees in specialist training programs in Australia
  • DOI:
    10.1186/s12909-019-1686-8
  • 发表时间:
    2019-07-05
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Daniel Thompson;Colin Thompson;Natasha Nassar;Annette Katelaris
  • 通讯作者:
    Annette Katelaris
Converting day treatment centers to supported employment programs in Rhode Island.
将罗德岛日间治疗中心转变为支持性就业计划。
  • DOI:
    10.1176/appi.ps.52.3.351
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    D. Becker;G. Bond;Daniel McCarthy;Daniel Thompson;Haiyi Xie;G. McHugo;R. Drake
  • 通讯作者:
    R. Drake
Fast and slow thinking applied to dementia: An animation explaining the relevance of Kahneman’s theory
快速和慢速思维应用于痴呆症:解释卡尼曼理论相关性的动画
Heritable Aortic Disease: Uncertainty in the Absence of Evidence
遗传性主动脉疾病:缺乏证据时的不确定性

Daniel Thompson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Thompson', 18)}}的其他基金

New Directions in Thermodynamic Formalism for Geodesic Flows Beyond the Closed Riemannian Case
超越封闭黎曼情况的测地流热力学形式主义的新方向
  • 批准号:
    1954463
  • 财政年份:
    2020
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
SBIR Phase I: Thermal Insulation from Paper Mill Wastes
SBIR 第一阶段:利用造纸厂废物进行隔热
  • 批准号:
    1548414
  • 财政年份:
    2016
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
CAREER: Entropy in dynamics: connections with geometry, algebraic numbers, and bioscience
职业:动力学中的熵:与几何、代数数和生物科学的联系
  • 批准号:
    1454864
  • 财政年份:
    2015
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Continuing Grant
Thermodynamic Formalism and Dynamical Systems Arising from Geometry
热力学形式主义和几何产生的动力系统
  • 批准号:
    1101576
  • 财政年份:
    2011
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Evolution of Integrated Phenotypic Plasticity: Geographic Variation and Genetic Constraints
综合表型可塑性的进化:地理变异和遗传限制
  • 批准号:
    9806775
  • 财政年份:
    1998
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Dissertation Research: Population Differentiation in Migratory Raptors
论文研究:迁徙猛禽的种群分化
  • 批准号:
    9321656
  • 财政年份:
    1994
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
The Evolution of Diet-Induced Development Plasticity in HeadMorphology of Grasshoppers
饮食诱导的蚱蜢头部形态发育可塑性的演化
  • 批准号:
    8907386
  • 财政年份:
    1990
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant

相似海外基金

Challenge on data driven research foundation by merging formalism and AI
形式主义与人工智能融合对数据驱动研究基础的挑战
  • 批准号:
    23K17520
  • 财政年份:
    2023
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
A stochastic formalism for tensor perturbations: gravitational waves induced by non-linear effects
张量扰动的随机形式主义:非线性效应引起的引力波
  • 批准号:
    23KF0247
  • 财政年份:
    2023
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Hamiltonian formalism in wave turbulence problems
波湍流问题中的哈密顿形式主义
  • 批准号:
    2307712
  • 财政年份:
    2023
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Thermodynamic Formalism and Dimension of Overlapping Fractal Measures
热力学形式主义和重叠分形测度的维数
  • 批准号:
    2905612
  • 财政年份:
    2022
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Studentship
The best bureaucrat knows how to act. An ethnographic research on 'Chinese formalism' in bureaucratic institutions
最好的官僚知道如何行事。
  • 批准号:
    2754939
  • 财政年份:
    2022
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Studentship
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
  • 批准号:
    2153053
  • 财政年份:
    2022
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Many-Body Perturbation Formalism and Computational Prediction of Exciton Dynamics in Low-Dimensional Quantum Moiré Materials
低维量子莫尔材料中激子动力学的多体摄动形式主义和计算预测
  • 批准号:
    568202-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Aspects of the evolution dynamics of GR in the chiral formalism
手性形式主义中 GR 演化动力学的各个方面
  • 批准号:
    2601065
  • 财政年份:
    2021
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Studentship
Quantum circuit extraction from the Sum-over-Paths formalism
从路径求和形式中提取量子电路
  • 批准号:
    565041-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
ELEMENTS: Anharmonic formalism and codes to calculate thermal transport and phase change from first-principles calculations
元素:根据第一性原理计算计算热传输和相变的非谐形式和代码
  • 批准号:
    2103989
  • 财政年份:
    2021
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了