CAREER: Entropy in dynamics: connections with geometry, algebraic numbers, and bioscience

职业:动力学中的熵:与几何、代数数和生物科学的联系

基本信息

  • 批准号:
    1454864
  • 负责人:
  • 金额:
    $ 44.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Dynamics is the branch of mathematics that studies systems that evolve under time. From its origins in the late 19th century to today, the mathematical theory of dynamical systems has been inspired by problems in adjacent areas of mathematics (e.g. number theory, geometry, probability), and other natural sciences (e.g. celestial mechanics, statistical mechanics, population biology). This project belongs to that rich tradition, and focuses on deriving fundamental results for a variety of dynamical systems arising from geometry, number theory and applied settings. The common thread that unifies these topics is an 'entropic' approach to all the problems under consideration. The entropy of a dynamical system is a fundamental invariant which measures the complexity of its orbit structure. The three main research directions of the project are: (1) to establish uniqueness of measures of maximal entropy and equilibrium states in a variety of higher dimensional settings of interest to the dynamics and wider mathematical communities; (2) to give a number-theoretic description of all the possible entropies that can be achieved within certain natural classes of dynamical systems; (3) to use information-theoretic interpretations of entropy and related quantities to give insight to problems in mathematical bioscience. The project contains a substantial program of synergistic educational activities, including the development of an after-school math enrichment program for the Ohio State University Young Scholars Program. The program will develop fundamental mathematical skills for a talented population of students from under-represented groups taken from all the major urban areas of Ohio.Part (1) of the project develops a novel approach to the theory of equilibrium states, focusing on implementation to non-uniformly and partially hyperbolic systems. The project develops novel techniques to overcome some of the traditional obstructions to developing an effective theory in these higher dimensional settings. The end goal is to use these results to derive numerous global statistical properties (central limit theorems, large deviations, etc.) for the systems within our framework. Motivating examples include geodesic flows in non-positive curvature, and the Teichmueller flow on the moduli space of quadratic differentials. Part (2) concerns the algebraic description of numbers arising as entropies of post-critically finite interval maps. A surprising relationship between the degree of the map and the algebraic properties of these numbers was identified experimentally in Thurston's final paper. A rigorous explanation of this phenomenon remains an open problem, which the PI has recast in terms of identifying zeros of certain complex functions. Part (3) investigates finitary versions of entropy, and related quantities, in the mathematical biosciences. The PI will use these quantities, interpreted as measures of complexity, as tools for detecting structure in large data sets, particularly those arising in genomic analysis and in the dynamics of biologically motivated networks.
动力学是数学的一个分支,研究随时间演化的系统。从世纪末的起源到今天,动力系统的数学理论一直受到数学(例如数论,几何,概率)和其他自然科学(例如天体力学,统计力学,人口生物学)相邻领域问题的启发。这个项目属于丰富的传统,并侧重于推导各种动力系统的几何,数论和应用设置所产生的基本结果。统一这些主题的共同主线是对所有正在考虑的问题的“熵”方法。动力学系统的熵是一个基本不变量,它度量了系统轨道结构的复杂性。该项目的三个主要研究方向是:(1)在动力学和更广泛的数学界感兴趣的各种高维环境中建立最大熵和平衡态的唯一性度量;(2)对某些自然类动力系统中所有可能的熵给出数论描述;(3)利用熵和相关量的信息论解释来洞察数学生物科学中的问题。该项目包含一个实质性的协同教育活动方案,包括为俄亥俄州州立大学青年学者方案制定课后数学充实方案。该计划将发展基本的数学技能的学生从代表性不足的群体采取的所有主要城市地区的俄亥俄州的天才人口。该项目的第(1)部分开发了一种新的方法来平衡态理论,重点是实现非均匀和部分双曲系统。该项目开发了新的技术,以克服在这些更高维度的设置中开发有效理论的一些传统障碍。最终的目标是使用这些结果来推导出许多全局统计性质(中心极限定理,大偏差等)。在我们的框架内。激励的例子包括非正曲率的测地线流和二次微分模空间上的Teichmueller流。第(2)部分是关于后临界有限区间映射的熵数的代数描述。在瑟斯顿的最后一篇论文中,通过实验发现了映射的度与这些数的代数性质之间的惊人关系。对这一现象的严格解释仍然是一个悬而未决的问题,PI已经在确定某些复杂函数的零点方面进行了重新设计。第(3)部分研究了数学生物科学中熵和相关量的有限形式。PI将使用这些量,解释为复杂性的度量,作为检测大型数据集中结构的工具,特别是那些在基因组分析和生物动力网络动态中出现的数据。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measures of maximal entropy on subsystems of topological suspension semiflows
拓扑悬浮半流子系统的最大熵测度
  • DOI:
    10.4064/sm201105-13-1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Kucherenko, Tamara;Thompson, Daniel J.
  • 通讯作者:
    Thompson, Daniel J.
Fluctuations of Time Averages Around Closed Geodesics in Non-Positive Curvature
非正曲率下闭合测地线周围时间平均值的涨落
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Thompson其他文献

Understanding the factors critical to the TIG welding of Cu components in bar wound electric motors
  • DOI:
    10.1016/j.jmapro.2023.05.051
  • 发表时间:
    2023-08-25
  • 期刊:
  • 影响因子:
  • 作者:
    Chen Zhou;Hongliang Wang;Thomas Perry;Daniel Thompson
  • 通讯作者:
    Daniel Thompson
Additional qualifications of trainees in specialist training programs in Australia
  • DOI:
    10.1186/s12909-019-1686-8
  • 发表时间:
    2019-07-05
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Daniel Thompson;Colin Thompson;Natasha Nassar;Annette Katelaris
  • 通讯作者:
    Annette Katelaris
Converting day treatment centers to supported employment programs in Rhode Island.
将罗德岛日间治疗中心转变为支持性就业计划。
  • DOI:
    10.1176/appi.ps.52.3.351
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    D. Becker;G. Bond;Daniel McCarthy;Daniel Thompson;Haiyi Xie;G. McHugo;R. Drake
  • 通讯作者:
    R. Drake
Fast and slow thinking applied to dementia: An animation explaining the relevance of Kahneman’s theory
快速和慢速思维应用于痴呆症:解释卡尼曼理论相关性的动画
Heritable Aortic Disease: Uncertainty in the Absence of Evidence
遗传性主动脉疾病:缺乏证据时的不确定性

Daniel Thompson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Thompson', 18)}}的其他基金

New Directions in Thermodynamic Formalism for Geodesic Flows Beyond the Closed Riemannian Case
超越封闭黎曼情况的测地流热力学形式主义的新方向
  • 批准号:
    1954463
  • 财政年份:
    2020
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
SBIR Phase I: Thermal Insulation from Paper Mill Wastes
SBIR 第一阶段:利用造纸厂废物进行隔热
  • 批准号:
    1548414
  • 财政年份:
    2016
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
Thermodynamic Formalism and Dynamical Systems Arising from Geometry
热力学形式主义和几何产生的动力系统
  • 批准号:
    1259311
  • 财政年份:
    2012
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
Thermodynamic Formalism and Dynamical Systems Arising from Geometry
热力学形式主义和几何产生的动力系统
  • 批准号:
    1101576
  • 财政年份:
    2011
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
Evolution of Integrated Phenotypic Plasticity: Geographic Variation and Genetic Constraints
综合表型可塑性的进化:地理变异和遗传限制
  • 批准号:
    9806775
  • 财政年份:
    1998
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
Dissertation Research: Population Differentiation in Migratory Raptors
论文研究:迁徙猛禽的种群分化
  • 批准号:
    9321656
  • 财政年份:
    1994
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
The Evolution of Diet-Induced Development Plasticity in HeadMorphology of Grasshoppers
饮食诱导的蚱蜢头部形态发育可塑性的演化
  • 批准号:
    8907386
  • 财政年份:
    1990
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant

相似海外基金

HEOM: High entropy oxides: understanding their unique properties and dynamics using machine learning interatomic potentials
HEOM:高熵氧化物:使用机器学习原子间势了解其独特的性质和动力学
  • 批准号:
    EP/X034429/1
  • 财政年份:
    2023
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Fellowship
Index in Dynamics: A Tool to Prove the Entropy Conjecture
动力学索引:证明熵猜想的工具
  • 批准号:
    2000167
  • 财政年份:
    2020
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
Dynamics and Volume Entropy of surfaces
表面动力学和体积熵
  • 批准号:
    2027709
  • 财政年份:
    2018
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Studentship
Design and growth of high entropy oxides with tailored ionic dynamics for memory and computing applications
为内存和计算应用设计和生长具有定制离子动力学的高熵氧化物
  • 批准号:
    1810119
  • 财政年份:
    2018
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
Hierarchy of entropy and dynamics based on symmetry in time
基于时间对称性的熵和动力学的层次结构
  • 批准号:
    17H01148
  • 财政年份:
    2017
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Defining the role of conformational entropy in high affinity protein interactions
定义构象熵在高亲和力蛋白质相互作用中的作用
  • 批准号:
    9191582
  • 财政年份:
    2016
  • 资助金额:
    $ 44.48万
  • 项目类别:
Non-Equilibrium Statistical Mechanics with Topological Constraints: Thermodynamics and Entropy Production of Self-Organized Turbulence
具有拓扑约束的非平衡统计力学:自组织湍流的热力学和熵产生
  • 批准号:
    16J01486
  • 财政年份:
    2016
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Defining the role of conformational entropy in high affinity protein interactions
定义构象熵在高亲和力蛋白质相互作用中的作用
  • 批准号:
    9402239
  • 财政年份:
    2016
  • 资助金额:
    $ 44.48万
  • 项目类别:
RUI: Galois Action and Entropy in Non-archimedean Dynamics
RUI:非阿基米德动力学中的伽罗瓦作用和熵
  • 批准号:
    1501766
  • 财政年份:
    2015
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Continuing Grant
CPS: Breakthrough: An Entropy Framework for Communications and Dynamics Interdependency in Cyber Physical Systems: Analysis, Design and Implementation
CPS:突破:网络物理系统中通信和动力学相互依赖性的熵框架:分析、设计和实现
  • 批准号:
    1543830
  • 财政年份:
    2015
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了