The Severe Hail Analysis, Representation, and Prediction (SHARP) Project
严重冰雹分析、表示和预测 (SHARP) 项目
基本信息
- 批准号:1261776
- 负责人:
- 金额:$ 81.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Severe hail, particularly in urban areas, can cause significant injury and millions of dollars in property damage. These impacts, however, could be significantly mitigated with more accurate and precise hail predictions based on 0-2 hour numerical weather prediction (NWP) forecasts. To provide such NWP forecasts requires advances in data assimilation (DA), the development of innovative ensemble forecast methods, and the application of novel data mining techniques to represent and predict hail within state-of-the-art NWP models. The Severe Hail Analysis, Representation, and Prediction project (SHARP) will focus on answering two scientific hypotheses: (1) assimilation of data from new and multiple data sources (including single- and dual-polarization Doppler radars, wind profilers, soundings, and surface observations) will improve hail representation within a NWP model, and (2) application of advanced data-mining techniques to NWP ensemble output will improve predictions of hail size and coverage. The specific goals of SHARP will be to: (1) produce and verify 0-2 hour ensemble forecasts of severe hail for a variety of events; (2) assess the ability of these forecasts to correctly represent hail as observed by dual-polarization Doppler radars and other instruments; and (3) accurately predict the geographic extent and size of hail reaching the surface, verifying the forecasts against high-quality observational data sets such as those produced by the NOAA Severe Hazards Analysis and Verification Experiment (SHAVE). Forecast ensemble output will be compared against radar-based extrapolation methods. The intellectual merit of this effort lies in progress toward application of advanced data assimilation (using multiple-moment microphysics and dual-polarization radar data) and data mining for short-term hail prediction. Though data mining has been applied to precipitation forecasts at the continental scale, far more novel is its use alongside advanced Ensemble Kalman Filter (EnKF) DA for convective-scale NWP. This effort builds upon previous work by the PIs in the fields of DA, storm-scale ensemble prediction, and data mining. This project is expected to advance the science of severe weather prediction, defining a paradigm linking data assimilation and data mining that could be applied to predict other convective-scale hazards such as downbursts and tornadoes. With sufficient computing resources, the techniques and algorithms developed in this project could be applied to support real-time severe weather warning operations, as envisioned in the NWS "Warn-on-Forecast" paradigm. Broader Impacts of will include enhanced cross-disciplinary connections disciplinary and potential economic benefits to sectors including aviation that are especially vulnerable to hail. Results will aid in improving lead-time and user confidence in hail warnings, giving vulnerable industries increased opportunity to mitigate damage and individuals additional time to seek shelter. Collaboration with the National Severe Storms Laboratory will enable comparison and testing of results against operational, radar-based extrapolation methods and enable transfer of knowledge and tools to NWS forecasters responsible for severe weather warnings. The PIs will provide interdisciplinary training to graduate students, as well as undergraduate students through the OU/CAPS Research Experiences for Undergraduates (REU) program, with which the PIs have a strong history of involvement.
严重的冰雹,特别是在城市地区,可能造成重大伤害和数百万美元的财产损失。 然而,这些影响可以通过基于0-2小时数值天气预报(NWP)预报的更准确和精确的冰雹预报来显著减轻。 为了提供这样的NWP预报需要在数据同化(DA),创新的集合预报方法的发展,以及应用新的数据挖掘技术来表示和预测冰雹在国家的最先进的NWP模式的进步。 强冰雹分析、表示和预测项目(SHARP)将重点回答两个科学假设:(1)同化来自新的和多个数据源的数据(包括单极和双极化多普勒雷达,风廓线仪,探测和地面观测)将改善NWP模式中的冰雹表示,(2)将先进的数据挖掘技术应用于数值预报集合输出,将改善冰雹大小和覆盖范围的预报。 SHARP的具体目标将是:(1)为各种事件制作和核实0-2小时的严重冰雹集合预报;(2)评估这些预报正确反映双极化多普勒雷达和其他仪器观测到的冰雹的能力;(3)准确预报冰雹到达地面的地理范围和大小,根据高质量的观测数据集,如美国国家海洋和大气管理局严重灾害分析和验证实验(SHAVE)产生的数据集,验证预报。预报集合输出将与基于雷达的外推方法进行比较。 这一努力的智力价值在于在应用先进的数据同化(使用多矩微物理和双极化雷达数据)和数据挖掘进行短期冰雹预报方面取得进展。 虽然数据挖掘已被应用于大陆尺度的降水预报,更新颖的是它的使用与先进的Enkilman滤波器(EnKF)DA对流尺度NWP。 这项工作建立在以前的工作,由PI在DA,风暴尺度集合预测和数据挖掘领域。预计该项目将推进恶劣天气预测科学,确定一种将数据同化和数据挖掘联系起来的范例,可用于预测下击暴流和龙卷风等其他对流规模的灾害。 有了足够的计算资源,在这个项目中开发的技术和算法可以应用到支持实时恶劣天气预警业务,在NWS的“警告预测”范式的设想。更广泛的影响将包括加强跨学科的联系,学科和潜在的经济利益,包括航空部门,特别容易受到冰雹。 研究结果将有助于改善冰雹预警的准备时间和用户信心,使脆弱行业有更多的机会减轻损失,使个人有更多的时间寻求庇护。与国家强风暴实验室的合作将使结果能够与基于雷达的业务外推方法进行比较和测试,并使知识和工具能够转让给负责恶劣天气警报的国家气象局预报员。 该PI将提供跨学科的培训,研究生,以及本科生,通过ESTA/CAPS研究经验的本科生(REU)计划,其中PI有很强的参与历史。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ming Xue其他文献
[Effect of asiaticoside on hyperoxia-induced bronchopulmonary dysplasia in neonatal rats and related mechanism].
积雪草苷对高氧诱导的新生大鼠支气管肺发育不良的影响及相关机制
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Lang;Xue;G. He;Er;Ming Xue - 通讯作者:
Ming Xue
The Socket Programming and Software Design for Communication Based on Client/Server
基于客户端/服务器通信的Socket编程及软件设计
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Ming Xue;Chang - 通讯作者:
Chang
Unusual presentation of esophageal tuberculosis: a case study
- DOI:
10.1186/s12879-024-10418-9 - 发表时间:
2025-01-02 - 期刊:
- 影响因子:3.000
- 作者:
Ming Xue;Yue-Can Zeng - 通讯作者:
Yue-Can Zeng
Differentiation of Acquired Immune Deficiency Syndrome Related Primary Central Nervous System Lymphoma from Cerebral toxoplasmosis with Use of Susceptibility-Weighted Imaging and Contrast Enhanced 3D-T1WI
- DOI:
10.1016/j.ijid.2021.10.023 - 发表时间:
2021-12-01 - 期刊:
- 影响因子:
- 作者:
Jingjing Li;Ming Xue;Zhibin Lv;Chunshuang Guan;Shunxing Huang;Shuo Li;Bo Liang;Xingang Zhou;Budong Chen;Ruming Xie - 通讯作者:
Ruming Xie
Incorporating Diagnosed Intercept Parameters and the Graupel Category within the ARPS Cloud Analysis System for the Initialization of Double-Moment Microphysics: Testing with a Squall Line over South China
将诊断的截距参数和霰粒类别纳入 ARPS 云分析系统中以初始化双力矩微物理:用华南飑线进行测试
- DOI:
10.1175/mwr-d-15-0008.1 - 发表时间:
2016-01 - 期刊:
- 影响因子:3.2
- 作者:
Yujie Pan;Ming Xue;Guoqing Ge - 通讯作者:
Guoqing Ge
Ming Xue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ming Xue', 18)}}的其他基金
Collaborative Research: Observing and Understanding Planetary Boundary Layer (PBL) Heterogeneities and Their Impacts on Tornadic Storms during VORTEX-SE 2018 Field Experiment
合作研究:在 VORTEX-SE 2018 现场实验期间观察和理解行星边界层 (PBL) 异质性及其对龙卷风暴的影响
- 批准号:
1917701 - 财政年份:2019
- 资助金额:
$ 81.91万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Petascale Ensemble-Based Data Assimilation for the Numerical Analysis and Prediction of High-Impact Weather
合作研究:实现基于千万亿次集合的数据同化,以进行高影响天气的数值分析和预测
- 批准号:
0905040 - 财政年份:2009
- 资助金额:
$ 81.91万 - 项目类别:
Standard Grant
Collaborative Research: CDI-Type II--Integrated Weather and Wildfire Simulation and Optimization for Wildfire Management
合作研究:CDI-Type II——天气与野火综合模拟及野火管理优化
- 批准号:
0941491 - 财政年份:2009
- 资助金额:
$ 81.91万 - 项目类别:
Standard Grant
VORTEX2: A Study of Tornado and Tornadic Thunderstorm Dynamics through High-Resolution Simulation, Advanced Data Assimilation and Prediction
VORTEX2:通过高分辨率模拟、高级数据同化和预测研究龙卷风和龙卷风雷暴动力学
- 批准号:
0802888 - 财政年份:2008
- 资助金额:
$ 81.91万 - 项目类别:
Continuing Grant
Storm-Scale Quantitative Precipitation Forecasting Using Advanced Data Assimilation Techniques: Methods, Impacts and Sensitivities
使用先进数据同化技术的风暴规模定量降水预报:方法、影响和敏感性
- 批准号:
0530814 - 财政年份:2005
- 资助金额:
$ 81.91万 - 项目类别:
Continuing Grant
Optimal Utilization and Impact of Water Vapor and Other High Resolution Observations in Storm-Scale Quantitative Precipitation Forecasts (QPF)
水蒸气和其他高分辨率观测在风暴规模定量降水预报 (QPF) 中的优化利用和影响
- 批准号:
0129892 - 财政年份:2002
- 资助金额:
$ 81.91万 - 项目类别:
Continuing Grant
A New Joint Weather Research and Prediction (WRF) Model
新的联合天气研究和预测 (WRF) 模型
- 批准号:
9909007 - 财政年份:2000
- 资助金额:
$ 81.91万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 81.91万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344260 - 财政年份:2024
- 资助金额:
$ 81.91万 - 项目类别:
Standard Grant
Collaborative Research: Comparison between In-situ and Polarimetric Radar Hail Observations in Convective Storms
合作研究:对流风暴中原位和偏振雷达冰雹观测的比较
- 批准号:
2221719 - 财政年份:2022
- 资助金额:
$ 81.91万 - 项目类别:
Standard Grant
Low Power Hail Detection Device
低功率冰雹检测装置
- 批准号:
574456-2022 - 财政年份:2022
- 资助金额:
$ 81.91万 - 项目类别:
University Undergraduate Student Research Awards
The Northern Hail Project: uncovering the meteorology, climatology, and impacts of hailstorms in Canada
北方冰雹项目:揭示加拿大冰雹的气象学、气候学和影响
- 批准号:
576691-2022 - 财政年份:2022
- 资助金额:
$ 81.91万 - 项目类别:
Alliance Grants
Collaborative Research: Comparison between In-situ and Polarimetric Radar Hail Observations in Convective Storms
合作研究:对流风暴中原位和偏振雷达冰雹观测的比较
- 批准号:
2221720 - 财政年份:2022
- 资助金额:
$ 81.91万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track A: Community Based Ride-Hail Pilot: One Car, Multiple Opportunities
SCC-CIVIC-PG 赛道 A:社区网约车试点:一辆车,多种机会
- 批准号:
2044095 - 财政年份:2021
- 资助金额:
$ 81.91万 - 项目类别:
Standard Grant
In-situ Collaborative Experiment for the Collection of Hail In the Plains (ICECHIP)
平原冰雹收集现场协作实验(ICECHIP)
- 批准号:
2117273 - 财政年份:2021
- 资助金额:
$ 81.91万 - 项目类别:
Standard Grant
PREEVENTS Track 2: Collaborative Research: Improving High-Impact Hail Event Forecasts by Linking Hail Environments and Modeled Hailstorm Processes
预防轨道 2:协作研究:通过将冰雹环境与冰雹过程模型联系起来改进高影响冰雹事件预报
- 批准号:
1855054 - 财政年份:2019
- 资助金额:
$ 81.91万 - 项目类别:
Continuing Grant














{{item.name}}会员




