Photocrosslinked Hydroxide Exchange Membranes for Alkaline Fuel Cells

用于碱性燃料电池的光交联氢氧化物交换膜

基本信息

  • 批准号:
    1264503
  • 负责人:
  • 金额:
    $ 24.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-03-15 至 2016-02-29
  • 项目状态:
    已结题

项目摘要

1264503 KloxinThere is a critical need to create more effective hydroxide exchange membranes to enable a new generation of alkaline fuel cells. Membranes must exhibit acceptable conductivity, alkaline stability, and easy fabrication to make the relatively inexpensive hydroxide exchange fuel cell (HEFC) a viable energy option. Although proton exchange fuel cells (PEFCs) have garnered much of the recent attention, the reaction of hydrogen to protons commonly requires expensive precious metal catalysts, such as platinum, which is both uneconomical and unsustainable for large-scale applications. By changing the operation of the fuel cell such that hydroxide is produced at the cathode and passed through the membrane, the PIs can employ cheaper catalysts, such as nickel alloy. The focus of this project is a synergistic collaboration between two PIs, having complementary skills in fuel cells and polymer networks. Together they plan to create a novel photo-cured, alkaline-stable, and inexpensive membrane material with high hydroxide conductivity. Specifically, the aims of the project are fourfold: 1) synthesize, crosslink, and characterize monomers and polymers having quaternary phosphonium pendant functional groups as well as photo-induced crosslinking capability using novel chemical schemes; 2) formulate these novel monomer and polymer compositions to optimize their membrane properties, such as swelling, mechanical strength, alkaline degradation resistance, and hydroxide conductivity for each of the three hydroxide exchange fuel-cell membrane layers: cathode, membrane, and anode; 3) create a membrane electrode assembly with the optimized materials, exploiting their spatiotemporal crosslinking control to fabricate complex HEFC designs as well as demonstrate the capability of these materials in device miniaturization and cell fabrication multiplexing; and 4) train a diverse group of undergraduate and graduate students in chemical synthesis, polymer chemistry, and membrane separations. Photo-mediated crosslinking will not only provide a dimensionally stable membrane, which is critical in HEFCs, but also enable a new method for fabricating complex membrane electrode assemblies. The results of this project will increase the understanding of how molecular composition influences membrane performance and properties. The proposed synthetic strategy allows the geometric configuration and membrane structure to be precisely tuned, which will provide insight into the complex interplay between hydroxide conductivity, gas exchange, and transport within a dimensionally stable membrane. Broader Impacts. Diverse personnel will be involved in a unique combination of chemical reactions and engineering, polymer engineering, and next-generation energy applications. The lead PIs are involved in outreach activities such as the University of Delaware Engineering Discovery Program, which targets K-12 students and parents. The PIs will develop a demonstration module to explain membranes to K-12 student and parents. The potential transformational aspect of the project is the fabrication of materials that will play a significant role in the realization of lower cost membranes for alkaline fuel cells, leading to an energy source with a low-carbon footprint.
迫切需要制造更有效的氢氧化物交换膜以实现新一代碱性燃料电池。 膜必须表现出可接受的导电性、碱性稳定性和易于制造,以使相对便宜的氢氧化物交换燃料电池(HEFC)成为可行的能源选择。 虽然质子交换燃料电池(PEFC)最近已经获得了很多关注,但氢与质子的反应通常需要昂贵的贵金属催化剂,如铂,这对于大规模应用来说既不经济又不可持续。 通过改变燃料电池的操作,使得氢氧化物在阴极产生并穿过膜,PI可以使用更便宜的催化剂,例如镍合金。 该项目的重点是两个PI之间的协同合作,在燃料电池和聚合物网络方面具有互补的技能。 他们计划共同创造一种新型的光固化,碱稳定,廉价的膜材料,具有高氢氧化物导电性。 具体而言,该项目的目标有四个方面:1)使用新的化学方案合成、交联和表征具有季鏻侧基官能团以及光诱导交联能力的单体和聚合物; 2)配制这些新的单体和聚合物组合物以优化它们的膜性能,例如溶胀、机械强度、耐碱性降解性,和三个氢氧化物交换燃料电池膜层(阴极、膜和阳极)中的每一个的氢氧化物电导率; 3)用优化的材料制造膜电极组件,利用它们的时空交联控制来制造复杂的HEFC设计,并展示这些材料在器件小型化和电池方面的能力。制造复用; 4)培养化学合成、高分子化学和膜分离方面的本科生和研究生。 光介导的交联将不仅提供在HEFC中至关重要的尺寸稳定的膜,而且还能够实现用于制造复杂膜电极组件的新方法。 该项目的结果将增加对分子组成如何影响膜性能和特性的理解。 所提出的合成策略允许的几何构型和膜结构进行精确的调整,这将提供洞察氢氧化物的导电性,气体交换和运输在一个尺寸稳定的膜之间的复杂的相互作用。 更广泛的影响。 不同的人员将参与化学反应和工程,聚合物工程和下一代能源应用的独特组合。 首席PI参与外展活动,如特拉华州大学工程发现计划,该计划针对K-12学生和家长。 PI将开发一个演示模块,向K-12学生和家长解释膜。 该项目的潜在转型方面是材料的制造,这些材料将在实现碱性燃料电池的低成本膜方面发挥重要作用,从而实现低碳足迹的能源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Kloxin其他文献

Christopher Kloxin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Kloxin', 18)}}的其他基金

Chemical Functionalization and Polymerization of Peptide Particle Assemblies
肽颗粒组装体的化学功能化和聚合
  • 批准号:
    2003897
  • 财政年份:
    2020
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant

相似海外基金

In situ flux growth synthesis of layered double hydroxide/sodium titanate hybrid structure adsorbent for actual wastewater treatment
原位通量生长合成层状双氢氧化物/钛酸钠杂化结构吸附剂用于实际废水处理
  • 批准号:
    24K17541
  • 财政年份:
    2024
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel Hydroxide Ion Conductive Membranes for Advanced Ammonia Fuel Cell
用于先进氨燃料电池的新型氢氧化物离子导电膜
  • 批准号:
    DE230100407
  • 财政年份:
    2023
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Discovery Early Career Researcher Award
Physical Properties and Colloidal Stability of Aluminium Hydroxide Adjuvants (RehydragelTM)
氢氧化铝佐剂 (ReHydragelTM) 的物理性质和胶体稳定性
  • 批准号:
    570656-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Alliance Grants
Valence control of magnesium hydroxide: possibility of hydroxide electronics
氢氧化镁的价态控制:氢氧化物电子的可能性
  • 批准号:
    22K05268
  • 财政年份:
    2022
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Synthesis of mixed anion compounds by using metal hydroxide nanoparticles
利用金属氢氧化物纳米颗粒合成混合阴离子化合物
  • 批准号:
    22K14753
  • 财政年份:
    2022
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Calcium Hydroxide-Calcium Carbonate Core-Shell Biocidal Particles
氢氧化钙-碳酸钙核壳杀菌颗粒的研制
  • 批准号:
    574788-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 24.2万
  • 项目类别:
    University Undergraduate Student Research Awards
EAGER: CAS-Climate: Revitalizing Iron Hydroxide Electrode for Energy-Efficient Green Batteries by Promoting Ferrous- and Ferric- Hydroxides Redox
EAGER:CAS-Climate:通过促进亚铁和氢氧化铁的氧化还原,使节能绿色电池的氢氧化铁电极焕发活力
  • 批准号:
    2222928
  • 财政年份:
    2022
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
EFRI DCheM: Making Cement Green by Low-Temperature Manufacturing of Calcium Hydroxide from Distributed Waste Sources
EFRI DCheM:通过从分布式废物源中低温制造氢氧化钙,使水泥变得绿色
  • 批准号:
    2132022
  • 财政年份:
    2021
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Intercalation of Atomically Precise Gold Clusters into Layered Double Hydroxide for Achieving Clean Catalytic Systems
将原子级精确的金簇嵌入层状双氢氧化物中以实现清洁催化系统
  • 批准号:
    21K14476
  • 财政年份:
    2021
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Understanding and Overcoming the Fundamental Barriers to the Direct Reduction of Aluminum Hydroxide to Aluminum Metal
职业:了解并克服氢氧化铝直接还原为金属铝的基本障碍
  • 批准号:
    2047851
  • 财政年份:
    2021
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了