Unraveling the Mechanisms of Facile Oxygen Reduction Reaction Promoted by Molten Carbonates: Implications for Low Temperature Solid Oxide Fuel Cells

揭示熔融碳酸盐促进的轻松氧还原反应的机制:对低温固体氧化物燃料电池的影响

基本信息

  • 批准号:
    1264706
  • 负责人:
  • 金额:
    $ 26.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT#1264706Kevin HuangThe growing need for clean and sustainable energy has stimulated a global imperative that demands new technologies for the way we produce and use energy. The high-efficiency, low-emission and fuel-flexible solid oxide fuel cell (SOFC) is a promising power generation technology to meet that demand. For solid oxide fuel cells to become a commercial product, however, they must be made more economical to operate and reliability must be improved to a level capable of competing with the existing internal combustion engine technology. One of the leading technical approaches toward that goal is to lower the operating temperature window from the current 700-1000C to 500-700C or lower by drastically improving the electrochemical performances of the electrodes, particularly the cathode for oxygen reduction. Increasing the surface area of the active cathode has been common research strategy for boosting cathode performance, but often with the expense of high fabrication cost and poor stability.Other means to improve catalytic performance are under investigation. Professor Kevin Huang of the University of South Carolina recently demonstrated that molten carbonates (MCs) can significantly boost the rate of the oxygen reduction reaction (ORR). Further, this unconventional catalyst appears to be simply prepared with single-step fabrication. The National Science Foundation Catalysis & Biocatalysis Program is making an award to fund Prof. Huang's project which is aimed at understanding from a fundamental science perspective the mechanisms of charge-transfer governing the MC-promoted ORR kinetics in SOFC cathodes operated at 650C.The innovative approach to enhance ORR kinetics through the use of molten carbonates may transform the conventional wisdom in understanding ORR mechanisms and in developing new catalytic cathode materials, thus providing the enabling technology for SOFCs to move toward commercialization. This has significant potential for an energy strategy for the US.The PI plans several educational and outreach activities to enhance the understanding of SOFCs and the energy picture, and of the impact of this research work. Undergraduate students including minority and underrepresented groups will play an active role in this research through clearly identified, focused research projects. A new course °Solid State Electrochemistry¡± will be developed for the graduate students in the spring of 2015. The importance and potential impact of ongoing scientific advances in the area of energy research will be disseminated to the general public via an annual "Science Cafe" program at the University of South Carolina. A joint summer workshop with Benedict College, a historically black college, will be held in the summer of 2014 at the University of South Carolina to promote education and workforce development in the energy realm.
摘要:对清洁和可持续能源的需求日益增长,这促使全球迫切需要新的技术来生产和使用能源。高效、低排放、燃料灵活的固体氧化物燃料电池(SOFC)是一种很有前途的发电技术。然而,为了使固体氧化物燃料电池成为商业产品,必须使它们的操作更经济,并且必须将可靠性提高到能够与现有内燃机技术竞争的水平。实现该目标的主要技术方法之一是通过大幅改善电极(特别是用于氧还原的阴极)的电化学性能来将操作温度窗口从当前的700- 1000 ℃降低到500- 700 ℃或更低。增加活性阴极的表面积是提高阴极性能的常用研究策略,但通常以制造成本高和稳定性差为代价,其他改善催化性能的方法正在研究中。南卡罗来纳州大学的Kevin Huang教授最近证明,熔融碳酸盐(MC)可以显着提高氧还原反应(ORR)的速率。此外,这种非常规的催化剂似乎是简单地用一步制造制备。美国国家科学基金会催化&生物催化计划正在奖励黄教授的项目,该项目旨在从基础科学的角度理解在650 ℃下操作的SOFC阴极中MC促进的ORR动力学的电荷转移机制。通过使用熔融碳酸盐来增强ORR动力学的创新方法可能会改变理解ORR机制和开发新的催化阴极材料的传统智慧,为SOFC走向商业化提供了使能技术。这对美国的能源战略具有重大的潜力。PI计划开展几项教育和推广活动,以提高对SOFC和能源状况的理解,以及这项研究工作的影响。包括少数民族和代表性不足的群体在内的本科生将通过明确的、有重点的研究项目在这项研究中发挥积极作用。2015年春季将为研究生开设一门新课程《固态电化学》。将通过南卡罗来纳州大学的年度“科学咖啡馆”方案向公众宣传能源研究领域正在取得的科学进展的重要性和潜在影响。2014年夏天,将在南卡罗来纳州大学与历史上的黑人学院本尼迪克特学院联合举办暑期讲习班,以促进能源领域的教育和劳动力发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Huang其他文献

The effect of damage control laparotomy on surgical-site infection risks after emergent intestinal surgery.
损伤控制剖腹手术对急诊肠道手术后手术部位感染风险的影响。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Maosong Ye;Connor P. Littlefield;Linder Wendt;C. Galet;Kevin Huang;D. Skeete
  • 通讯作者:
    D. Skeete
Towards real-time surface tracking and motion compensation integration for robotic surgery
实现机器人手术的实时表面跟踪和运动补偿集成
A Finite Length Cylinder Model for Mixed Oxide-Ion and Electron Conducting Cathodes Suited for Intermediate-Temperature Solid Oxide Fuel Cells
适用于中温固体氧化物燃料电池的混合氧化物-离子和电子导电阴极的有限长度圆柱体模型
  • DOI:
    10.1149/2.1011606jes
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinfang Jin;Jie Wang;Lon;R. White;Kevin Huang
  • 通讯作者:
    Kevin Huang
MS-Mentions: Consistently Annotating Entity Mentions in Materials Science Procedural Text
MS-Mentions:在材料科学程序文本中一致地注释实体提及
An Active and Robust Bifunctional Oxygen Electrocatalyst through Carbon-Free Hierarchical Functionalization.
  • DOI:
    10.1002/anie.201707322
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Huang
  • 通讯作者:
    Kevin Huang

Kevin Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Huang', 18)}}的其他基金

Collaborative Research: A New Class of Chemical Potential Driven Plug Flow Membrane Reactors for Combined Gas Separation and Direct Natural Gas Conversion
合作研究:用于组合气体分离和直接天然气转化的新型化学势驱动平推流膜反应器
  • 批准号:
    1924095
  • 财政年份:
    2019
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Continuing Grant
Fundamentals of a New All Solid-state Metal-air Redox Battery Operated on Oxide-ion Chemistry
基于氧化物离子化学的新型全固态金属空气氧化还原电池的基础知识
  • 批准号:
    1801284
  • 财政年份:
    2018
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
Collaborative Research: On the Origin of Atomic Layer Deposition Enhanced Activity and Stability of Nanostructured Cathodes for Intermediate-temperature Solid Oxide Fuel Cells
合作研究:中温固体氧化物燃料电池纳米结构阴极的原子层沉积增强活性和稳定性的起源
  • 批准号:
    1464112
  • 财政年份:
    2015
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Continuing Grant
Electrochemical Capture of CO2 and Instant Conversion into Syngas: A Combined Mechanistic and Engineering Approach
电化学捕获 CO2 并立即转化为合成气:机械与工程相结合的方法
  • 批准号:
    1401280
  • 财政年份:
    2014
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
EAGER: Exploring a New Bi-ionic Transport Mechanism in Dual-Phase Electrochemical CO2 Separation Membranes
EAGER:探索双相电化学 CO2 分离膜中的新型双离子传输机制
  • 批准号:
    1340269
  • 财政年份:
    2013
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

CAREER: Bridging Research & Education in Delineating Fatigue Performance & Damage Mechanisms in Metal Fused Filament Fabricated Inconel 718
职业:桥梁研究
  • 批准号:
    2338178
  • 财政年份:
    2024
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Molecular Mechanisms of Insect Cuticular Chitin Maintenance
职业:了解昆虫表皮几丁质维持的分子机制
  • 批准号:
    2338209
  • 财政年份:
    2024
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Continuing Grant
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
  • 批准号:
    2338346
  • 财政年份:
    2024
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Continuing Grant
Conference: 2024 Thiol-Based Redox Regulation and Signaling GRC and GRS: Mechanisms and Consequences of Redox Signaling
会议:2024年基于硫醇的氧化还原调节和信号传导GRC和GRS:氧化还原信号传导的机制和后果
  • 批准号:
    2418618
  • 财政年份:
    2024
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
  • 批准号:
    2419343
  • 财政年份:
    2024
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
CAREER: Probing structural dynamics and regulatory mechanisms of RNA-guided CRISPR-Cas12 endonucleases and their analogues
职业:探索 RNA 引导的 CRISPR-Cas12 核酸内切酶及其类似物的结构动力学和调控机制
  • 批准号:
    2339799
  • 财政年份:
    2024
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Continuing Grant
CAREER: Measurement of Photochemical Mechanisms, Rates, and Pathways of Radical Formation in Complex Organic Compounds
职业:测量复杂有机化合物中自由基形成的光化学机制、速率和途径
  • 批准号:
    2340926
  • 财政年份:
    2024
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Continuing Grant
CAREER: Early-life social environments drive behavioral and neural mechanisms of development
职业:早期社会环境驱动行为和神经机制的发展
  • 批准号:
    2341006
  • 财政年份:
    2024
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了