FRG: Collaborative Research: Statistical Modeling and Inference of Vast Matrices for Complex Problems
FRG:协作研究:复杂问题的庞大矩阵的统计建模和推理
基本信息
- 批准号:1265203
- 负责人:
- 金额:$ 72.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-15 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technological advances make it possible to collect and store large data with relatively low costs. As a result, scientific studies in a wide range of fields routinely generate a massive amount of data. Oftentimes, our ability to obtain measurements outpaces our ability to derive useful information from them. These pressing challenges serve as the ultimate motivation for the proposed research. In particular, this collaborative proposal presents novel research plans on the development of statistical theory and methodologies as well as computational techniques for a host of problems involving large matrices ranging from covariance matrices, volatility matrices, density matrices to relational matrices.The past few years have witnessed an explosion of data as a result of scientific and technological advances. As data storage cost continues to fall, the focal point on these big data has been transitioning inevitably from data management towards deriving actionable insights from them. There is a pressing need to respond to these challenges and understand the profound impact of large data on scientific research and knowledge discovery. The proposed research project deals with emerging problems that arise naturally at the frontier of a multitude of scientific and technological fields such as systems biology, high-frequency finance, and quantum computing among others. As a consequence, the proposed research effort will not only push forward the state-of-the-art of statistical understanding of large matrices, but also facilitate the advancement of various scientific fields and their embracement of the digital revolution.
技术的进步使得以相对较低的成本收集和存储大数据成为可能。因此,广泛领域的科学研究通常会产生大量的数据。通常,我们获得度量的能力超过了我们从中获取有用信息的能力。这些紧迫的挑战是本研究的最终动机。特别是,这个合作提案提出了新的研究计划,关于统计理论和方法的发展,以及涉及协方差矩阵、波动矩阵、密度矩阵到关系矩阵等大型矩阵的大量问题的计算技术。过去几年,由于科技进步,数据爆炸式增长。随着数据存储成本的持续下降,这些大数据的焦点已经不可避免地从数据管理转向从中获取可操作的见解。我们迫切需要应对这些挑战,并了解大数据对科学研究和知识发现的深远影响。拟议的研究项目涉及在系统生物学、高频金融和量子计算等众多科学和技术领域的前沿自然出现的新问题。因此,拟议的研究工作不仅将推动对大型矩阵的最新统计理解,而且还将促进各个科学领域的进步及其对数字革命的拥抱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yazhen Wang其他文献
Quantum gaussian processes
量子高斯过程
- DOI:
10.1007/bf02006861 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Yazhen Wang - 通讯作者:
Yazhen Wang
Adaptive thresholding estimator of the large dimensional integrated volatility matrix
大维积分波动率矩阵的自适应阈值估计器
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:6.3
- 作者:
Donggyu Kim;Xin-Bing Kong;Cui-Xia Li;Yazhen Wang - 通讯作者:
Yazhen Wang
A Model Integration Strategy for Quantitative Aging Assessment of Insulating Paper by NIRS
NIRS 定量评估绝缘纸老化的模型集成策略
- DOI:
10.1109/cieec58067.2023.10167239 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Han Li;Lei Yuan;Yazhen Wang;Jinshan Lin;Guanjun Zhang;Yuan Li - 通讯作者:
Yuan Li
The L2risk of an isotonic estimate
等渗估计的 L2risk
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Yazhen Wang;K. S. Chen - 通讯作者:
K. S. Chen
Minimax estimation via wavelets for indirect long-memory data
通过小波对间接长记忆数据进行极小极大估计
- DOI:
10.1016/s0378-3758(96)00205-4 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Yazhen Wang - 通讯作者:
Yazhen Wang
Yazhen Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yazhen Wang', 18)}}的其他基金
Statistical Learning Problems with Complex Stochastic Models
复杂随机模型的统计学习问题
- 批准号:
1913149 - 财政年份:2019
- 资助金额:
$ 72.2万 - 项目类别:
Standard Grant
Statistical Problems in Large Volatility Matrix Estimation and Quantum Annealing Based Computing
大波动率矩阵估计和基于量子退火的计算中的统计问题
- 批准号:
1707605 - 财政年份:2018
- 资助金额:
$ 72.2万 - 项目类别:
Standard Grant
Collaborative Research: Adiabatic Quantum Computing and Statistics
合作研究:绝热量子计算与统计
- 批准号:
1528735 - 财政年份:2015
- 资助金额:
$ 72.2万 - 项目类别:
Continuing Grant
Large Matrix Estimation for Super-High Dimensional Data
超高维数据的大矩阵估计
- 批准号:
1005635 - 财政年份:2010
- 资助金额:
$ 72.2万 - 项目类别:
Continuing Grant
GARCH, Diffusion, Stochastic Volatility and Wavelets
GARCH、扩散、随机波动率和小波
- 批准号:
0103607 - 财政年份:2001
- 资助金额:
$ 72.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Jump and Sharp Cusp Detection by Wavelets
数学科学:小波的跳跃和尖锐尖点检测
- 批准号:
9404142 - 财政年份:1994
- 资助金额:
$ 72.2万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 72.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 72.2万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 72.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 72.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 72.2万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 72.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 72.2万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 72.2万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 72.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 72.2万 - 项目类别:
Continuing Grant