Large Matrix Estimation for Super-High Dimensional Data
超高维数据的大矩阵估计
基本信息
- 批准号:1005635
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The amount and complexity of data generated to support modern scientific studies continues to grow rapidly. Large data sets, characterized by many variables or features and/or many samples, are now commonly studied in fields ranging from finance and biomedical sciences to geoscience and engineering. Such large complex data pose a number of statistical and computational challenges that are absent in more traditional statistical tools, where sample size is required to be much larger than the number of features or variables. At the same time, they present unprecedented opportunities to statistics discipline. For these super-high dimensional data, practical statistical methods with rigorously-established properties, while remain difficult, become more important than ever to many frontier scientific studies like climate modeling, portfolio allocation and risk management, quantum computation and quantum communication, gene expression study, and image understanding. This project studies the estimation of (i) large covariance matrices; (ii) large volatility matrices in high-frequency finance; (iii) large density matrices in quantum information science. The investigator intends to develop novel statistical methodologies and theories via sparsity for the large matrix inference problems based on complex super-high dimensional data. The research project has great potential to make a significant impact on the broad scientific community.Digital revolution has a profound impact on data collections in scientific research and knowledge discovery, and technological advances make it possible to collect data with relatively low costs. As a result, the amount and complexity of data generated to support modern scientific studies continues to grow rapidly. Large data sets are now commonly used in fields ranging from finance and biomedical sciences to geoscience and engineering. Such large scale, complex data pose a number of statistical and computational challenges that are absent in more traditional statistical tools. At the same time, they present unprecedented opportunities to statistics. For these data sets, valid statistical methods become more important than ever to many frontier scientific studies like climate modeling, portfolio allocation and risk management, quantum computation and quantum communication, gene expression study, and image understanding. The research project creates advanced effective statistical tools for the analysis of such vast complex data. The investigator actively engages in activities to integrate research with student training and address applications in the fields of biomedical sciences, geoscience, finance, and quantum information science.
为支持现代科学研究而生成的数据的数量和复杂性继续快速增长。大型数据集的特点是有许多变量或特征和/或许多样本,现在通常在从金融和生物医学科学到地球科学和工程等领域进行研究。如此大的复杂数据带来了许多统计和计算挑战,而这些挑战在更传统的统计工具中是不存在的,在这些工具中,样本量需要比特征或变量的数量大得多。与此同时,它们也为统计学科带来了前所未有的机遇。对于这些超高维数据,具有严格建立的属性的实用统计方法虽然仍然很困难,但对于许多前沿科学研究,如气候建模,投资组合分配和风险管理,量子计算和量子通信,基因表达研究和图像理解变得比以往任何时候都重要。该项目研究(i)大协方差矩阵的估计;(ii)高频金融中的大波动率矩阵;(iii)量子信息科学中的大密度矩阵。研究者试图通过稀疏性理论为基于复杂超高维数据的大型矩阵推理问题提供新的统计方法和理论。数字革命对科学研究和知识发现中的数据收集产生了深刻影响,技术进步使以相对较低的成本收集数据成为可能。 因此,为支持现代科学研究而生成的数据的数量和复杂性继续快速增长。大型数据集现在普遍用于从金融和生物医学科学到地球科学和工程等领域。如此大规模的复杂数据带来了许多传统统计工具所不具备的统计和计算挑战。与此同时,它们为统计提供了前所未有的机会。对于这些数据集,有效的统计方法对于许多前沿科学研究变得比以往任何时候都更加重要,例如气候建模、投资组合分配和风险管理、量子计算和量子通信、基因表达研究和图像理解。该研究项目为分析如此庞大复杂的数据创造了先进有效的统计工具。研究者积极参与活动,将研究与学生培训相结合,并解决生物医学科学,地球科学,金融和量子信息科学领域的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yazhen Wang其他文献
Quantum gaussian processes
量子高斯过程
- DOI:
10.1007/bf02006861 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Yazhen Wang - 通讯作者:
Yazhen Wang
Adaptive thresholding estimator of the large dimensional integrated volatility matrix
大维积分波动率矩阵的自适应阈值估计器
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:6.3
- 作者:
Donggyu Kim;Xin-Bing Kong;Cui-Xia Li;Yazhen Wang - 通讯作者:
Yazhen Wang
A Model Integration Strategy for Quantitative Aging Assessment of Insulating Paper by NIRS
NIRS 定量评估绝缘纸老化的模型集成策略
- DOI:
10.1109/cieec58067.2023.10167239 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Han Li;Lei Yuan;Yazhen Wang;Jinshan Lin;Guanjun Zhang;Yuan Li - 通讯作者:
Yuan Li
The L2risk of an isotonic estimate
等渗估计的 L2risk
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Yazhen Wang;K. S. Chen - 通讯作者:
K. S. Chen
Minimax estimation via wavelets for indirect long-memory data
通过小波对间接长记忆数据进行极小极大估计
- DOI:
10.1016/s0378-3758(96)00205-4 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Yazhen Wang - 通讯作者:
Yazhen Wang
Yazhen Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yazhen Wang', 18)}}的其他基金
Statistical Learning Problems with Complex Stochastic Models
复杂随机模型的统计学习问题
- 批准号:
1913149 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Statistical Problems in Large Volatility Matrix Estimation and Quantum Annealing Based Computing
大波动率矩阵估计和基于量子退火的计算中的统计问题
- 批准号:
1707605 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Adiabatic Quantum Computing and Statistics
合作研究:绝热量子计算与统计
- 批准号:
1528735 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Statistical Modeling and Inference of Vast Matrices for Complex Problems
FRG:协作研究:复杂问题的庞大矩阵的统计建模和推理
- 批准号:
1265203 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
GARCH, Diffusion, Stochastic Volatility and Wavelets
GARCH、扩散、随机波动率和小波
- 批准号:
0103607 - 财政年份:2001
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Mathematical Sciences: Jump and Sharp Cusp Detection by Wavelets
数学科学:小波的跳跃和尖锐尖点检测
- 批准号:
9404142 - 财政年份:1994
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
基于Matrix2000加速器的个性小数据在线挖掘
- 批准号:2020JJ4669
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
多模强激光场R-MATRIX-FLOQUET理论
- 批准号:19574020
- 批准年份:1995
- 资助金额:7.5 万元
- 项目类别:面上项目
相似海外基金
Development and application of weighted adjacency matrix estimation methods based on multivariate data
基于多元数据的加权邻接矩阵估计方法的开发与应用
- 批准号:
23K01377 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical mechanical approach to matrix and tensor estimation
矩阵和张量估计的统计机械方法
- 批准号:
22KJ1074 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Optimal Loss-Based Covariance Matrix Estimation in High Dimensions with Applications to Unsupervised Statistical Learning
高维基于最优损失的协方差矩阵估计及其在无监督统计学习中的应用
- 批准号:
557275-2021 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Postgraduate Scholarships - Doctoral
Optimal Loss-Based Covariance Matrix Estimation in High Dimensions with Applications to Unsupervised Statistical Learning
高维基于最优损失的协方差矩阵估计及其在无监督统计学习中的应用
- 批准号:
557275-2021 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Postgraduate Scholarships - Doctoral
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Spatial weight matrix estimation with LASSO
使用 LASSO 估计空间权重矩阵
- 批准号:
21K20145 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
CRII: CIF: Generalizations for Matrix and Tensor Estimation
CRII:CIF:矩阵和张量估计的概括
- 批准号:
1948256 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional statistical inference: model diagnostics, covariance matrix estimation and overdispersion data.
高维统计推断:模型诊断、协方差矩阵估计和过度离散数据。
- 批准号:
RGPIN-2016-05174 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual