FRG: Collaborative Research: Statistical Modeling and Inference of Vast Matrices for Complex Problems

FRG:协作研究:复杂问题的庞大矩阵的统计建模和推理

基本信息

  • 批准号:
    1265202
  • 负责人:
  • 金额:
    $ 27.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Technological advances make it possible to collect and store large data with relatively low costs. As a result, scientific studies in a wide range of fields routinely generate a massive amount of data. Oftentimes, our ability to obtain measurements outpaces our ability to derive useful information from them. These pressing challenges serve as the ultimate motivation for the proposed research. In particular, this collaborative proposal presents novel research plans on the development of statistical theory and methodologies as well as computational techniques for a host of problems involving large matrices ranging from covariance matrices, volatility matrices, density matrices to relational matrices.The past few years have witnessed an explosion of data as a result of scientific and technological advances. As data storage cost continues to fall, the focal point on these big data has been transitioning inevitably from data management towards deriving actionable insights from them. There is a pressing need to respond to these challenges and understand the profound impact of large data on scientific research and knowledge discovery. The proposed research project deals with emerging problems that arise naturally at the frontier of a multitude of scientific and technological fields such as systems biology, high-frequency finance, and quantum computing among others. As a consequence, the proposed research effort will not only push forward the state-of-the-art of statistical understanding of large matrices, but also facilitate the advancement of various scientific fields and their embracement of the digital revolution.
技术进步使得以相对较低的成本收集和存储大量数据成为可能。因此,广泛领域的科学研究通常会产生大量数据。通常,我们获得测量结果的能力超过了我们从中获得有用信息的能力。这些紧迫的挑战是拟议研究的最终动机。特别是,该合作计划提出了关于统计理论和方法的发展,以及涉及协方差矩阵,波动矩阵,密度矩阵到关系矩阵的大量问题的计算技术的新研究计划。过去几年,由于科学和技术的进步,数据爆炸。随着数据存储成本的持续下降,这些大数据的焦点不可避免地从数据管理转向从中获得可操作的见解。我们迫切需要应对这些挑战,并了解大数据对科学研究和知识发现的深刻影响。拟议的研究项目涉及在众多科学和技术领域的前沿自然出现的新问题,如系统生物学,高频金融和量子计算等。因此,拟议的研究工作不仅将推动大矩阵的统计理解的最新水平,而且还将促进各个科学领域的进步及其对数字革命的拥抱。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ming Yuan其他文献

h4 style=font-size:14px;font-family:Arial, Helvetica, sans-serif;background-color:#FFFFFF;Transition-Metal-Free Synthesis of Phenanthridinones from Biaryl-2-oxamic Acid under Radical Conditions/h4
自由基条件下由联芳基-2-草酰胺酸无过渡金属合成菲啶酮
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Ming Yuan;Li Chen;Junwei Wang;Shenjie Chen;Kongchao Wang;Yongbo Xue;Guangmin Yao;Zengwei Luo;Yonghui Zhang
  • 通讯作者:
    Yonghui Zhang
Breast Cancer Risk Prediction Using Electronic Health Records
使用电子健康记录预测乳腺癌风险
Geochemical distortion on shale oil maturity caused by oil migration: Insights from the non-hydrocarbons revealed by FT-ICR MS
石油运移引起的页岩油成熟度地球化学畸变:FT-ICR MS揭示的非烃洞察
  • DOI:
    10.1016/j.coal.2022.104142
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Ming Yuan;Songqi Pan;Zhenhua Jing;Stefanie Poetz;Quan Shi;Yuanjia Han;Caineng Zou
  • 通讯作者:
    Caineng Zou
A Novel Red Electroluminescent Polymers Derived from Carbazole and 4,7-Bis(2-thienyl)-2,1,3-benzothiadiazole,
一种源自咔唑和4,7-双(2-噻吩基)-2,1,3-苯并噻二唑的新型红色电致发光聚合物,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jian Huang;Yishe Xu;Qiong Hou;Wei Yang;Ming Yuan;Yong Cao
  • 通讯作者:
    Yong Cao
Genome-wide association mapping and candidate gene analysis for water-soluble protein concentration in soybean (Glycine max) based on high-throughput single nucleotide polymorphism markers
基于高通量单核苷酸多态性标记的大豆水溶性蛋白浓度的全基因组关联图谱和候选基因分析
  • DOI:
    10.1071/cp19425
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Meinan Sui;Yue Wang;Zhihui Cui;Weili Teng;Ming Yuan;Wenbin Li;Xi Wang;Ruiqiong Li;Yan Lv;Ming Yan;Chao Quan;Xue Zhao;Yingpeng Han
  • 通讯作者:
    Yingpeng Han

Ming Yuan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ming Yuan', 18)}}的其他基金

FRG: Collaborative Research: Dynamic Tensors: Statistical Methods, Theory, and Applications
FRG:协作研究:动态张量:统计方法、理论和应用
  • 批准号:
    2052955
  • 财政年份:
    2021
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
Complexity of High-Dimensional Statistical Models: An Information-Based Approach
高维统计模型的复杂性:基于信息的方法
  • 批准号:
    2015285
  • 财政年份:
    2020
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Methods, Algorithms, and Theory for Large Tensors
合作研究:大张量的统计方法、算法和理论
  • 批准号:
    1721584
  • 财政年份:
    2017
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Methods, Algorithms, and Theory for Large Tensors
合作研究:大张量的统计方法、算法和理论
  • 批准号:
    1803450
  • 财政年份:
    2017
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
CAREER: Sparse Modeling and Estimation with High-dimensional Data
职业:高维数据的稀疏建模和估计
  • 批准号:
    1321692
  • 财政年份:
    2013
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
CAREER: Sparse Modeling and Estimation with High-dimensional Data
职业:高维数据的稀疏建模和估计
  • 批准号:
    0846234
  • 财政年份:
    2009
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
Statistical Modeling with High-dimensional Data: Variable Selection and Regularization
高维数据统计建模:变量选择和正则化
  • 批准号:
    0706724
  • 财政年份:
    2007
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了