CAREER: Sparse Modeling and Estimation with High-dimensional Data
职业:高维数据的稀疏建模和估计
基本信息
- 批准号:0846234
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the recent advances in science and technology, high dimensional data are becoming a commonplace in diverse fields. The goal of this proposed research is to develop methods and theory for several basic classes of statistical problems associated with this type of data. Among the central questions are the nature of sparsity in different contexts, and how it determines our ability or inability to deal with high dimensional data. The investigator studies a reproducing kernel Hilbert space based framework to exploit sparsity for general predictive problems. The framework underpins the connections among various popular methods that encourage sparsity, and provides an opportunity to study them in a unified fashion, which in turn will foster the development of improved methods and algorithms. The investigator will also consider the problem of covariance matrix estimation and selection. The research concentrates on understanding the nature of and connection among various notions of sparsity for large covariance matrix, and their relationship with Gaussian graphical models.From the world's most powerful telescopes to the finest atomic force microscopes, from the flourishing financial market to the fast-growing World-Wide Web, high dimensional and massive data are being produced at an astonishing rate. Immediate access to copious amount of interesting and important information presents unprecedented opportunities, but also creates unique challenges, to mathematicians in general and statisticians in particular. Development of statistical theory to understand the nature of their fundamental characteristics, and methodology to address the associated issues, including those discussed in this proposal, will advance our intellectual exploration and knowledge, and undoubtedly benefit a multitude of scientific and technological fields -- genomics, medical imaging, communication networks, and finance are just a few well known examples.
随着科学技术的进步,高维数据在各个领域中变得越来越普遍。这项研究的目标是为与这类数据相关的几类基本统计问题开发方法和理论。其中的核心问题是稀疏性在不同背景下的性质,以及它如何决定我们处理高维数据的能力或能力。研究人员研究了再生核希尔伯特空间的框架,利用稀疏性一般预测问题。该框架支持鼓励稀疏的各种流行方法之间的联系,并提供了一个以统一的方式研究它们的机会,这反过来又将促进改进方法和算法的发展。研究者还将考虑协方差矩阵估计和选择的问题。从世界上最强大的望远镜到最精细的原子力显微镜,从蓬勃发展的金融市场到快速发展的万维网,高维和海量数据正以惊人的速度产生。立即获得大量有趣和重要的信息提供了前所未有的机会,但也创造了独特的挑战,一般数学家,特别是统计学家。发展统计理论以了解其基本特征的性质,以及解决相关问题的方法,包括本提案中讨论的问题,将促进我们的智力探索和知识,无疑有利于众多科学和技术领域-基因组学,医学成像,通信网络和金融只是几个众所周知的例子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ming Yuan其他文献
Heteroepitaxial growth on the air-solid interface: A large matching tolerance between nonpolar organic molecules on polar inorganic substrates
气固界面上的异质外延生长:极性无机基底上非极性有机分子之间的大匹配公差
- DOI:
10.1016/j.apsusc.2020.146394 - 发表时间:
2020 - 期刊:
- 影响因子:6.7
- 作者:
Mingxia Yuan;Ming Yuan;Zhi Zhu;Bo Song;Feng Zhang - 通讯作者:
Feng Zhang
Sparse recovery: from vectors to tensors
稀疏恢复:从向量到张量
- DOI:
10.1093/nsr/nwx069 - 发表时间:
2018-09 - 期刊:
- 影响因子:20.6
- 作者:
Yao Wang;Deyu Meng;Ming Yuan - 通讯作者:
Ming Yuan
Geochemical distortion on shale oil maturity caused by oil migration: Insights from the non-hydrocarbons revealed by FT-ICR MS
石油运移引起的页岩油成熟度地球化学畸变:FT-ICR MS揭示的非烃洞察
- DOI:
10.1016/j.coal.2022.104142 - 发表时间:
2022-11 - 期刊:
- 影响因子:5.6
- 作者:
Ming Yuan;Songqi Pan;Zhenhua Jing;Stefanie Poetz;Quan Shi;Yuanjia Han;Caineng Zou - 通讯作者:
Caineng Zou
Breast Cancer Risk Prediction Using Electronic Health Records
使用电子健康记录预测乳腺癌风险
- DOI:
10.1109/ichi.2017.62 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yirong Wu;E. Burnside;Jennifer Cox;Jun Fan;Ming Yuan;Jie Yin;P. Peissig;Alexander G. Cobian;D. Page;M. Craven - 通讯作者:
M. Craven
Genome-wide association mapping and candidate gene analysis for water-soluble protein concentration in soybean (Glycine max) based on high-throughput single nucleotide polymorphism markers
基于高通量单核苷酸多态性标记的大豆水溶性蛋白浓度的全基因组关联图谱和候选基因分析
- DOI:
10.1071/cp19425 - 发表时间:
2020-04 - 期刊:
- 影响因子:1.9
- 作者:
Meinan Sui;Yue Wang;Zhihui Cui;Weili Teng;Ming Yuan;Wenbin Li;Xi Wang;Ruiqiong Li;Yan Lv;Ming Yan;Chao Quan;Xue Zhao;Yingpeng Han - 通讯作者:
Yingpeng Han
Ming Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ming Yuan', 18)}}的其他基金
FRG: Collaborative Research: Dynamic Tensors: Statistical Methods, Theory, and Applications
FRG:协作研究:动态张量:统计方法、理论和应用
- 批准号:
2052955 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Complexity of High-Dimensional Statistical Models: An Information-Based Approach
高维统计模型的复杂性:基于信息的方法
- 批准号:
2015285 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: Statistical Methods, Algorithms, and Theory for Large Tensors
合作研究:大张量的统计方法、算法和理论
- 批准号:
1721584 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: Statistical Methods, Algorithms, and Theory for Large Tensors
合作研究:大张量的统计方法、算法和理论
- 批准号:
1803450 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Sparse Modeling and Estimation with High-dimensional Data
职业:高维数据的稀疏建模和估计
- 批准号:
1321692 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Statistical Modeling and Inference of Vast Matrices for Complex Problems
FRG:协作研究:复杂问题的庞大矩阵的统计建模和推理
- 批准号:
1265202 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Statistical Modeling with High-dimensional Data: Variable Selection and Regularization
高维数据统计建模:变量选择和正则化
- 批准号:
0706724 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
基于Sparse-Land模型的SAR图像噪声抑制与分割
- 批准号:60971128
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Network Topology Recovery Method using Sparse Modeling
使用稀疏建模的网络拓扑恢复方法
- 批准号:
22KJ3056 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Machine Learning for Signal Analysis and System Modeling: Sparse and Event Driven Strategies
用于信号分析和系统建模的机器学习:稀疏和事件驱动策略
- 批准号:
RGPIN-2017-05939 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Sparse Signal Processing and Modeling of High Dimensional Spatio-Temporal Data
高维时空数据的稀疏信号处理和建模
- 批准号:
RGPIN-2017-03840 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Analysis of bounding flight in birds by dynamic sparse modeling and its application to drones
动态稀疏建模分析鸟类弹跳飞行及其在无人机中的应用
- 批准号:
20K21008 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Sparse Signal Processing and Modeling of High Dimensional Spatio-Temporal Data
高维时空数据的稀疏信号处理和建模
- 批准号:
RGPIN-2017-03840 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
A new signal reconstruction method combining sparse modeling and optimal interpolation approximation theory
稀疏建模与最优插值逼近理论相结合的信号重构新方法
- 批准号:
20K04489 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine Learning for Signal Analysis and System Modeling: Sparse and Event Driven Strategies
用于信号分析和系统建模的机器学习:稀疏和事件驱动策略
- 批准号:
RGPIN-2017-05939 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Development of next-generation encoder by sparse modeling using frequency domain analysis of super resolution image reconstruction.
使用超分辨率图像重建的频域分析通过稀疏建模开发下一代编码器。
- 批准号:
20K21830 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Adding to the Future: Thermal Modeling, Sparse Sensing, and Integrated Controls for Precise and Reliable Powder Bed Fusion
职业:为未来添砖加瓦:热建模、稀疏传感和集成控制,实现精确可靠的粉床融合
- 批准号:
1953155 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Sparse Signal Processing and Modeling of High Dimensional Spatio-Temporal Data
高维时空数据的稀疏信号处理和建模
- 批准号:
RGPIN-2017-03840 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual