Collaborative Research: Enabling Non-contact Structural Dynamic Identification with Focused Ultrasound Radiation Force
合作研究:利用聚焦超声辐射力实现非接触式结构动态识别
基本信息
- 批准号:1266019
- 负责人:
- 金额:$ 30.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research project is to obtain an understanding of how to fully characterize the dynamics of structures by using non-contacting ultrasonic radiation force excitation. Although modal analysis has matured significantly in the last three decades, existing empirical approaches do not effectively address the ultrasonic frequency range (above ~20kHz) which hinders quantitative validation of numerical structural models. This holds particularly true for small structures, such as engine turbine blades, that have very high, closely spaced, resonant frequencies and cannot be appropriately excited by using physical attachment. The project will address several critical needs that are required to move ultrasound radiation force excitation from being a qualitative laboratory technique into a methodology that can be widely adopted by the engineering community. One of these involves calibration and real-time monitoring of the imparted force by utilizing interferometric methods and innovative fiber-optic pressure sensors. Another major task involves correlation of resonant frequencies for structures excited in air and the same structures in water or other fluids. The combined measurement and modeling required for this task are important since the higher intensity available for the ultrasound radiation force excitation in water would allow shorter testing times, improved signal to noise ratios, and the possibility of driving structures with sufficient force to identify non-linearities for damage detection.The research will have a broad impact in a wide range of applications since it will enable non-contact, high-frequency characterization of structural dynamics of small components that cannot be adequately characterized using conventional techniques. Ultrasound radiation force excitation techniques will aid in understanding the dynamics of turbine blades; this is of critical importance to help reduce high cycle fatigue failure, which has relevance to companies in the aviation and power generation industries. The techniques demonstrated will also be applied to hard-drive suspensions, naval propulsive components, and similar applications that would benefit from excitation without physical contact. Both graduate and undergraduate students involved in the research will be exposed to technical and nontechnical problems crucial to industry. A strong outreach effort will be implemented using planned demonstrations to motivate women, K-12 students, and underrepresented minority groups to become interested in science and engineering. Undergraduate music students, taking a general education course, will be exposed to the research results and have the opportunity to study vibrations of their instruments. The Principle Investigators will be developing a collection of videos, and corresponding curriculum guides, that will be posted on YouTube and related sites showing vibration of musical instruments, sporting equipment and other common objects. Outreach will also extend to national laboratories and companies that may benefit from understanding the new measurement approaches and analytical methods created, as well as local, regional, and national media so as to effectively capture the imagination of the general public.
该研究项目的目标是了解如何通过使用非接触式超声辐射力激励来充分表征结构的动力学。尽管模态分析在过去三十年中已经显着成熟,但现有的经验方法并不能有效解决超声波频率范围(高于~20kHz),这阻碍了数值结构模型的定量验证。这对于小型结构尤其如此,例如发动机涡轮叶片,它们具有非常高、间隔很近的共振频率,并且无法通过使用物理附件适当地激发。该项目将满足将超声辐射力激励从定性实验室技术转变为工程界广泛采用的方法所需的几个关键需求。其中之一涉及利用干涉测量方法和创新的光纤压力传感器来校准和实时监控所施加的力。另一项主要任务涉及空气中激发的结构和水或其他流体中相同结构的共振频率的相关性。这项任务所需的组合测量和建模非常重要,因为水中超声辐射力激励的强度更高,可以缩短测试时间,提高信噪比,并可以用足够的力驱动结构来识别非线性以进行损伤检测。这项研究将在广泛的应用中产生广泛的影响,因为它将能够对小型部件的结构动力学进行非接触式高频表征,而这些小型部件是无法 使用常规技术充分表征。超声波辐射力激励技术将有助于了解涡轮叶片的动力学;这对于帮助减少高周疲劳失效至关重要,这与航空和发电行业的公司息息相关。演示的技术还将应用于硬盘驱动器悬架、海军推进部件以及类似的应用,这些应用将受益于无需物理接触的激励。参与研究的研究生和本科生都将接触到对行业至关重要的技术和非技术问题。我们将通过有计划的示威活动来实施强有力的外展活动,以激励女性、K-12 学生和代表性不足的少数群体对科学和工程产生兴趣。参加普通教育课程的本科音乐学生将接触到研究成果,并有机会研究乐器的振动。原理研究人员将开发一系列视频和相应的课程指南,这些视频和课程指南将发布在 YouTube 和相关网站上,显示乐器、运动器材和其他常见物体的振动。外展活动还将扩展到可能受益于了解新测量方法和分析方法的国家实验室和公司,以及地方、区域和国家媒体,以有效激发公众的想象力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Avitabile其他文献
Efficient techniques for forced response involving linear modal components interconnected by discrete nonlinear connection elements
- DOI:
10.1016/j.ymssp.2007.07.005 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:
- 作者:
Peter Avitabile;John O’Callahan - 通讯作者:
John O’Callahan
Improved denoising methods for smoothing frequency response functions
用于平滑频率响应函数的改进去噪方法
- DOI:
10.1016/j.ymssp.2023.110722 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:8.900
- 作者:
John A. Seymour;Peter Avitabile - 通讯作者:
Peter Avitabile
Peter Avitabile的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Avitabile', 18)}}的其他基金
Graduate Research Fellowship Program (GRFP)
研究生研究奖学金计划(GRFP)
- 批准号:
1656341 - 财政年份:2016
- 资助金额:
$ 30.12万 - 项目类别:
Fellowship Award
Multi-semester Interwoven Problem for Teaching Basic Core STEM Material Critical to Solving Dynamic Systems Problems
用于教学基本核心 STEM 材料的多学期交织问题对于解决动态系统问题至关重要
- 批准号:
0314875 - 财政年份:2003
- 资助金额:
$ 30.12万 - 项目类别:
Continuing grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 30.12万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332468 - 财政年份:2024
- 资助金额:
$ 30.12万 - 项目类别:
Continuing Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
- 批准号:
2348589 - 财政年份:2024
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
- 批准号:
2311950 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
- 批准号:
2317826 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Continuing Grant