Collaborative Research: Nexus of Simulation, Sensing and Actuation for Aerodynamic Vibration Reduction of Wind Turbine Blades
合作研究:风力涡轮机叶片气动减振仿真、传感和驱动的结合
基本信息
- 批准号:1300970
- 负责人:
- 金额:$ 26.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this collaborative research project is to advance the smart blade system through innovations in areas of advanced computational models of fluid-structure interactions, sensors and actuators. Wind energy, an important source of clean and renewable energy, is becoming a major component of the U.S. energy portfolio. The interest in large capacity wind turbines as an economical way to harvest wind energy has significantly increased in recent years. Wind turbine blades are over 100m in length and the trend of increasing the size of the blades continues. However, increases in the size of wind turbine blades means that aerodynamic vibrations need to be managed to prevent catastrophic failures. The collaborative project team takes an innovative perspective to advance the smart turbine blade technology. The hypothesis of this research is that aerodynamic vibrations in wind turbine blades can be effectively mitigated with bio-inspired strategies for flow sensing, surface morphological change and fluid-structure interactions. The specific goals of this research project are 1) to understand blade vibration dynamics with advanced modeling of fluid-structure interactions; 2) to study the mechanism of bio-sensing for flow turbulence determination and to implement a feasible sensor design strategy; and 3) to understand and emulate the functions of "smart fins" and "smart denticles" for aerodynamic vibration reductions. A systematic approach will be undertaken by combining modeling, sensing and actuation strategies. The smart blade system performance will also be validated via simulation-based virtual testing and reduced-scale model experiments. All of these aim to advance the state of art in the smart wind turbine blades.This project presents a great opportunity to advance smart blade technologies, which include intelligent components for blade vibration reduction. A unique bio-inspired strategy will be pursued to prevent catastrophic failures of wind turbine blades by effectively mitigating the aerodynamic vibrations. The strategy will also improve the operational efficiency of the wind energy system. All of these advances will have important impacts on the safe and efficient production of wind energy.
这个合作研究项目的目标是通过在流固耦合、传感器和执行器的先进计算模型领域的创新来推进智能叶片系统。风能是清洁和可再生能源的重要来源,正在成为美国能源组合的重要组成部分。近年来,人们对大容量风力涡轮机作为一种经济的风能收集方式的兴趣显著增加。风力机叶片长度超过100米,并且叶片尺寸的增加趋势仍在继续。然而,风力涡轮机叶片尺寸的增加意味着需要控制空气动力学振动以防止灾难性故障。合作项目团队以创新的视角推进智能涡轮叶片技术。本研究的假设是,风力涡轮机叶片的气动振动可以通过流动传感、表面形态变化和流固耦合等仿生策略有效减轻。本研究项目的具体目标是:1)通过先进的流固耦合建模来了解叶片振动动力学;2)研究生物传感对湍流度测定的机理,实现可行的传感器设计策略;3)了解和模拟“智能鳍”和“智能齿”在气动减振方面的功能。将采用系统的方法,结合建模、传感和驱动策略。智能叶片系统的性能也将通过基于仿真的虚拟测试和缩小比例的模型实验进行验证。所有这些都旨在提高智能风力涡轮机叶片的技术水平。该项目为推进智能叶片技术提供了一个很好的机会,其中包括用于叶片减振的智能组件。一种独特的仿生策略将通过有效减轻空气动力学振动来防止风力涡轮机叶片的灾难性故障。该战略还将提高风能系统的运行效率。所有这些进步都将对风能的安全和高效生产产生重要影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qingli Dai其他文献
Micromechanical viscoelasto‐plastic models and finite element implementation for rate‐independent and rate‐dependent permanent deformation of stone‐based materials
- DOI:
10.1002/nag.861 - 发表时间:
2010-09 - 期刊:
- 影响因子:4
- 作者:
Qingli Dai - 通讯作者:
Qingli Dai
Prediction of Dynamic Modulus and Phase Angle of Stone-Based Composites Using a Micromechanical Finite-Element Approach
- DOI:
10.1061/(asce)mt.1943-5533.0000062 - 发表时间:
2010-06 - 期刊:
- 影响因子:3.2
- 作者:
Qingli Dai - 通讯作者:
Qingli Dai
Performance evaluation of glass powder as a partial precursor in alkali-activated slag (AAS) binder and recycled glass and steel fibers in AAS mortar
玻璃粉作为碱激活矿渣(AAS)粘结剂中部分前驱体以及在 AAS 砂浆中使用再生玻璃和钢纤维的性能评估
- DOI:
10.1016/j.conbuildmat.2025.140757 - 发表时间:
2025-04-25 - 期刊:
- 影响因子:8.000
- 作者:
Peifeng Su;Sunday Eniola;Jiankai Xie;Xiang Zhao;Chigozirim Ugboaja;Miaomiao Li;Ruizhe Si;Qingli Dai;Yuhuan Fei;Yun Hang Hu - 通讯作者:
Yun Hang Hu
Microstructure characterization of alkali-glass particle and alkali-glass powder reacted gels with neutron scattering and imaging techniques
用中子散射和成像技术表征碱玻璃颗粒和碱玻璃粉末反应凝胶的微观结构
- DOI:
10.1016/j.matchar.2017.07.006 - 发表时间:
2017 - 期刊:
- 影响因子:4.7
- 作者:
Xiao Sun;Shuaicheng Guo;Qingli Dai;Xianghui Xiao - 通讯作者:
Xianghui Xiao
Surface layer modulus prediction of asphalt pavement based on LTPP database and machine learning for Mechanical-Empirical rehabilitation design applications
- DOI:
10.1016/j.conbuildmat.2022.128303 - 发表时间:
2022-08-15 - 期刊:
- 影响因子:
- 作者:
Miaomiao Li;Qingli Dai;Peifeng Su;Zhanping You;Yunxiang Ma - 通讯作者:
Yunxiang Ma
Qingli Dai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qingli Dai', 18)}}的其他基金
Collaborative Research: Understanding Mechanism of Internal Frost-Induced Damage of Concrete from Microstructure Aspects
合作研究:从微观结构角度认识混凝土内部冻害机理
- 批准号:
0900015 - 财政年份:2009
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Microfluidic Fabrication of Self-Healing Microfibers for Composite Construction Materials
用于复合建筑材料的自修复微纤维的微流体制造
- 批准号:
0900582 - 财政年份:2009
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: School family nexus and educational differences during the Covid-19 pandemic and beyond
合作研究:Covid-19 大流行期间及之后的学校家庭关系和教育差异
- 批准号:
2049594 - 财政年份:2021
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Collaborative Research: School family nexus and educational differences during the Covid-19 pandemic and beyond
合作研究:Covid-19 大流行期间及之后的学校家庭关系和教育差异
- 批准号:
2049481 - 财政年份:2021
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Collaborative Research: Experiments and Simulations at the Nexus of Geophysics, Chemistry, Materials Science and Mechanics to Determine the Physical Basis for Rate-State Friction
合作研究:结合地球物理学、化学、材料科学和力学来确定速率状态摩擦的物理基础的实验和模拟
- 批准号:
1951467 - 财政年份:2020
- 资助金额:
$ 26.9万 - 项目类别:
Continuing Grant
Collaborative Research: Experiments and Simulations at the Nexus of Geophysics, Chemistry, Materials Science and Mechanics to Determine the Physical Basis for Rate-State Friction
合作研究:结合地球物理学、化学、材料科学和力学来确定速率状态摩擦的物理基础的实验和模拟
- 批准号:
1951462 - 财政年份:2020
- 资助金额:
$ 26.9万 - 项目类别:
Continuing Grant
Collaborative Research: Experiments and Simulations at the Nexus of Geophysics, Chemistry, Materials Science and Mechanics to Determine the Physical Basis for Rate-State Friction
合作研究:结合地球物理学、化学、材料科学和力学来确定速率状态摩擦的物理基础的实验和模拟
- 批准号:
1951314 - 财政年份:2020
- 资助金额:
$ 26.9万 - 项目类别:
Continuing Grant
Belmont Forum Collaborative Research: Community Collective Action to Respond to Climate Change Influencing the Environment-health Nexus
贝尔蒙特论坛合作研究:应对影响环境与健康关系的气候变化的社区集体行动
- 批准号:
2028065 - 财政年份:2020
- 资助金额:
$ 26.9万 - 项目类别:
Continuing Grant
Collaborative Research: Sustainability in the Food-Energy-Water nexus; integrated hydrologic modeling of tradeoffs between food and hydropower in large scale Chinese and US basins
合作研究:食品-能源-水关系的可持续性;
- 批准号:
2117393 - 财政年份:2020
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Belmont Forum Collaborative Research Food-Water-Energy Nexus: CITYFOOD
贝尔蒙特论坛合作研究食物-水-能源关系:CITYFOOD
- 批准号:
1832213 - 财政年份:2018
- 资助金额:
$ 26.9万 - 项目类别:
Continuing Grant
Belmont Forum Collaborative Research Food-Water-Energy Nexus: FEW-meter model to measure and improve urban agriculture, shifting it towards circular urban metabolism
贝尔蒙特论坛合作研究食物-水-能源关系:测量和改善城市农业的 FEW 模型,使其转向循环城市新陈代谢
- 批准号:
1829639 - 财政年份:2018
- 资助金额:
$ 26.9万 - 项目类别:
Continuing Grant
Collaborative Research: Sustainability in the Food-Energy-Water nexus; integrated hydrologic modeling of tradeoffs between food and hydropower in large scale Chinese and US basins
合作研究:食品-能源-水关系的可持续性;
- 批准号:
1855912 - 财政年份:2018
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant