Universal Meshes for Coupled Crack Propagation Problems and their Application to Hydraulic Fracturing

耦合裂纹扩展问题的通用网格及其在水力压裂中的应用

基本信息

  • 批准号:
    1301396
  • 负责人:
  • 金额:
    $ 30.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-03-01 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

The research objective of this award is to create a class of algorithms to simulate problems with moving or evolving three-dimensional geometries; in particular, problems in which a crack or fracture propagates in an object. Simulations of such problems require partitioning the geometry into regular parts, such as straight and curved tetrahedrons. This partition is called a mesh. For any given geometry, this is generally a labor-intensive step requiring human intervention. Such intervention is unfeasible in problems in which the geometry is continuously changing. This award will investigate a class of algorithms to deform a unique mesh so as to exactly partition an entire class of geometries. Such unique mesh is called a Universal Mesh. The goal is to identify conditions to make these algorithms automatic and robust, meaning that a computer should not require human intervention to perform the calculation. A byproduct of this project will be the investigation of algorithms to construct adaptively refined meshes in a prism of acute-angled tetrahedrons in three-dimensions.If successful, these studies would constitute an important step towards the simulation of hydraulic fracture strategies for oil and gas extraction and for enhanced geothermal system engineering. In particular, they would facilitate the simulation of the propagation of fractures in transient scenarios in which time-scales are important, such as thermally-induced fracture and fracture in poroelastic materials. More generally, the outcomes of this award would advance the state-of-the-art in the simulation of problems with evolving geometries. Universal meshes have extensive applications to fluid-structure interaction problems, shape optimization problems, and melting or solidification problems, among others. This project will support a graduate student at Stanford, and will expose undergraduate students from underrepresented minorities institutions to computational mechanics and applied mechanics, by working on aspects related to the project in the context of an ongoing summer internship program.
该奖项的研究目标是创建一类算法来模拟移动或演变的三维几何问题,特别是裂纹或断裂在物体中传播的问题。这类问题的模拟需要将几何体划分为规则的部分,如直四面体和弯曲四面体。这种分区称为网格。对于任何给定的几何体,这通常是一个需要人工干预的劳动密集型步骤。在几何体不断变化的问题中,这种干预是不可行的。这一奖项将研究一类算法,使唯一的网格变形,从而准确地划分整个几何类别。这种独特的网格被称为通用网格。目标是确定使这些算法自动化和健壮的条件,这意味着计算机不应该需要人工干预来执行计算。该项目的一个副产品将是研究在三维锐角四面体棱柱中构建自适应精细网格的算法。如果成功,这些研究将成为模拟石油和天然气开采以及增强地热系统工程的水力压裂策略的重要一步。特别是,它们将有助于在时间尺度很重要的瞬变场景中模拟裂缝的扩展,例如热诱导裂缝和多孔弹性材料中的裂缝。更广泛地说,这一奖项的结果将推动几何演化问题模拟的最先进水平。通用网格在流固耦合问题、形状优化问题、熔化或凝固问题等方面有着广泛的应用。这个项目将支持斯坦福大学的一名研究生,并将通过在正在进行的暑期实习计划的背景下,致力于与该项目相关的方面,让来自代表性不足的少数族裔机构的本科生接触计算力学和应用力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrian Lew其他文献

Adrian Lew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adrian Lew', 18)}}的其他基金

Three-Dimensional Crack Propagation Algorithms Based on Universal Meshes and their Application to Fracking
基于通用网格的三维裂纹扩展算法及其在压裂中的应用
  • 批准号:
    1662452
  • 财政年份:
    2017
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Standard Grant
Conference Support to Send US Participants to the Twelfth Pan-American Congress of Applied Mechanics (PACAM XII); Port of Spain, Trinidad; January 2-6, 2012
会议支持派遣美国与会者参加第十二届泛美应用力学大会(PACAM XII);
  • 批准号:
    1129538
  • 财政年份:
    2011
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Standard Grant
CAREER: Immersed Boundary Methods in Computational Solid Mechanics
职业:计算固体力学中的浸入边界方法
  • 批准号:
    0747089
  • 财政年份:
    2008
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Standard Grant

相似海外基金

Metabolite-based Immunoregulatory Polymer Surgical Meshes for Pelvic Floor Reconstructive Surgery
用于盆底重建手术的基于代谢物的免疫调节聚合物手术网片
  • 批准号:
    489757
  • 财政年份:
    2023
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Operating Grants
Finite element methods for Boltzmann neutron transport equation on polygonal and polyhedral meshes
多边形和多面体网格上玻尔兹曼中子输运方程的有限元方法
  • 批准号:
    2887026
  • 财政年份:
    2023
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Studentship
EAGER: Cut-and-Seam Manufacturing of Sensor Meshes for Perfusible Electronics
EAGER:用于可灌注电子设备的传感器网格的切割和缝合制造
  • 批准号:
    2309482
  • 财政年份:
    2023
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Standard Grant
Synthesis of flexible 2D polymer networks with regular meshes and exploring their mechanical properties
具有规则网格的柔性二维聚合物网络的合成并探索其机械性能
  • 批准号:
    23K13789
  • 财政年份:
    2023
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Defect detection in advanced manufacturing using elastic registration of meshes in the X-ray projection domain
使用 X 射线投影域中的网格弹性配准进行先进制造中的缺陷检测
  • 批准号:
    577578-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Alliance Grants
Segmentation d'objets géospatiaux à l'aide de réseaux de neurones convolutifs appliqués à des meshes
空间空间对象分割和神经元卷积贴花和网格的辅助工具
  • 批准号:
    574118-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30.16万
  • 项目类别:
    University Undergraduate Student Research Awards
Excellence in Research: Biodegradable composite nanofiber meshes that contain degradable metal particulates
卓越的研究:含有可降解金属颗粒的可生物降解复合纳米纤维网
  • 批准号:
    2100861
  • 财政年份:
    2021
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Standard Grant
Finite element error analysis on anisotropic meshes
各向异性网格有限元误差分析
  • 批准号:
    21K03372
  • 财政年份:
    2021
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Melting and Freezing on Surface Meshes
表面网格上的熔化和冻结
  • 批准号:
    565224-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Tissue-engineered solutions for uro-genital reconstruction, and replacing banned synthetic meshes.
用于泌尿生殖器重建的组织工程解决方案,并取代禁用的合成网片。
  • 批准号:
    444042
  • 财政年份:
    2021
  • 资助金额:
    $ 30.16万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了