RUI: Quantum, arithmetic, and categorial analysis of convex polytopes

RUI:凸多面体的量子、算术和分类分析

基本信息

  • 批准号:
    1301487
  • 负责人:
  • 金额:
    $ 13.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Lattice polytopes and convex polytopes form a natural habitat for a major part of the contemporary combinatorics. The first research direction, proposed in this project, involves a radically new idea of using analogies with quantum probabilistic physics. It introduces a new topological context for normal lattice polytopes. The second direction develops essentially new techniques for studying general convex polytopes. It is based on advanced categorial and homological machinery. The first line of research aims at shedding new light and making substantial progress on several outstanding open problems, such as unimodular triangulations and covers, Caratheodory rank, higher syzygies of the corresponding toric rings. The new idea of attacking these challenges draws from a physical interpretation of special discrete point configurations. Concrete suggestions in this direction to the PI were made by theoretical physicists and further connections to the physical context will be paid special attention. The second direction focuses on the category of convex polytopes and their affine maps. The goal is to devise a universal technique, providing a general context for various recent important constructions and results in polytope theory. The categorial approach leads to very concrete problems in classical polytopal combinatorics.Combinatorics is the science of organizing, arranging and analyzing discrete data. An illustrative example is the set of integer points in a convex polygon in the plane or in a convex polytope in the space. Combinatorics of lattice polytopes studies such point configurations to encode important constructions in algebra, geometry, and topology, while combinatorial methods are well suited for related computations. The interaction of combinatorics and abstract mathematical techniques, central to the proposed research, over the last decades has resulted in a number of fundamental theorems in a variety of disciplines. The proposal explores some of the deepest problems in polytopal combinatorics, employs ideas from a variety of disciplines and unexpected links between them, and offers concrete strategies for attacking central open questions. Applications range from algebraic geometry (the science of solution sets to systems of multidimensional polynomial equations) to integer programming/computer science, probability theory, and physics. The progress would have been unimaginable without computer assisted investigation and experimentation, the increased importance of which is related to the demand for algorithmic understanding of discrete structures. Both proposed research lines incorporate a strong - sometimes, crucial - computational element. Developing and implementing related algorithms is an excellent possibility for involving beginning graduate students.
格多面体和凸多面体构成了当代组合学的一个重要组成部分。在这个项目中提出的第一个研究方向涉及一个全新的想法,即使用量子概率物理学的类比。它为正规格多面体引入了一种新的拓扑上下文。第二个方向基本上是研究一般凸多面体的新技术。它是基于先进的范畴和同源机制。第一线的研究旨在摆脱新的光,并取得实质性进展的几个突出的开放问题,如单模三角剖分和覆盖,Caratheodory秩,较高syzygies相应的复曲面环。应对这些挑战的新想法来自对特殊离散点配置的物理解释。理论物理学家向PI提出了这个方向的具体建议,并将特别注意与物理背景的进一步联系。第二个方向主要研究凸多面体及其仿射映射。我们的目标是设计一个通用的技术,提供了一个一般的背景下,各种最近的重要建设和结果的多面体理论。范畴方法在经典的多面体组合学中导致非常具体的问题。组合学是组织、安排和分析离散数据的科学。一个说明性的例子是在平面中的凸多边形或在空间中的凸多面体中的整数点的集合。格多面体的组合学研究这样的点的配置编码在代数,几何和拓扑学的重要结构,而组合方法非常适合相关的计算。组合学和抽象数学技术的相互作用,中央提出的研究,在过去的几十年中,导致了一些基本定理在各种学科。该提案探讨了多面体组合学中一些最深层次的问题,采用了各种学科的思想和它们之间意想不到的联系,并提供了攻击中心开放问题的具体策略。应用范围从代数几何(多维多项式方程组的解集科学)到整数规划/计算机科学,概率论和物理学。如果没有计算机辅助的研究和实验,这些进展是不可想象的,其重要性的增加与对离散结构的算法理解的需求有关。这两个拟议的研究路线都包含了一个强大的-有时是关键的-计算元素。开发和实现相关的算法是一个很好的可能性,涉及开始研究生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Gubeladze其他文献

Polyhedral K 2
  • DOI:
    10.1007/s00229-002-0316-6
  • 发表时间:
    2002-11-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Winfried Bruns;Joseph Gubeladze
  • 通讯作者:
    Joseph Gubeladze
The nilpotence conjecture in K-theory of toric varieties
  • DOI:
    10.1007/s00222-004-0410-3
  • 发表时间:
    2005-04-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Joseph Gubeladze
  • 通讯作者:
    Joseph Gubeladze
Vertex maps between $$\triangle $$ , $$\Box $$ , and $$\Diamond $$
  • DOI:
    10.1007/s10711-014-9973-3
  • 发表时间:
    2014-03-19
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Joseph Gubeladze;Jack Love
  • 通讯作者:
    Jack Love

Joseph Gubeladze的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Gubeladze', 18)}}的其他基金

RUI: FOUR PROBLEMS IN POLYTOPAL ALGEBRAIC COMBINATORICS
RUI:多通代数组合中的四个问题
  • 批准号:
    1000641
  • 财政年份:
    2010
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
RUI: Convex Point Configurations in Algebraic Combinatorics
RUI:代数组合中的凸点配置
  • 批准号:
    0600929
  • 财政年份:
    2006
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
CBMS Regional Conference in the Mathematical Sciences - Algebraic and Topological Combinatorics of Ordered Sets - 18 - 22 July, 2005
CBMS 数学科学区域会议 - 有序集的代数和拓扑组合 - 2005 年 7 月 18 - 22 日
  • 批准号:
    0434402
  • 财政年份:
    2005
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
NSF-BSF: Derived and quantum corrected structures on arithmetic and geometric moduli
NSF-BSF:算术和几何模量的导出和量子校正结构
  • 批准号:
    2200914
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Approximate Quantum Arithmetic Units
近似量子算术单位
  • 批准号:
    580808-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Alliance Grants
Architectures and Distribution Arithmetic for Coupling Classical Computers to Noisy Intermediate-Scale Quantum Computers
用于将经典计算机耦合到嘈杂的中级量子计算机的架构和分布算法
  • 批准号:
    EP/V047507/1
  • 财政年份:
    2021
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Research Grant
Interdisciplinary research of arithmetic geometry and quantum field theory related to the moduli space of hyperbolic curves
双曲曲线模空间相关的算术几何与量子场论的跨学科研究
  • 批准号:
    18K13385
  • 财政年份:
    2018
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Arithmetic Quantum Unique Ergodicity for Higher Dimensional Congruence Manifolds
高维同余流形的算术量子独特遍历性
  • 批准号:
    427403-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Arithmetic Quantum Unique Ergodicity for Higher Dimensional Congruence Manifolds
高维同余流形的算术量子独特遍历性
  • 批准号:
    427403-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Arithmetic Quantum Unique Ergodicity for Higher Dimensional Congruence Manifolds
高维同余流形的算术量子独特遍历性
  • 批准号:
    427403-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of arithmetic topology and arithmetic quantum field theory
算术拓扑和算术量子场论的发展
  • 批准号:
    24340005
  • 财政年份:
    2012
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamics, Spectral Theory and Arithmetic in Quantum Chaos
量子混沌中的动力学、谱论和算术
  • 批准号:
    1101596
  • 财政年份:
    2011
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了