Spectral Theory for Decaying Oscillatory Schrodinger Operators
衰变振荡薛定谔算子的谱理论
基本信息
- 批准号:1301582
- 负责人:
- 金额:$ 12.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates spectral properties of Schrödinger operators and orthogonal polynomials, especially in the regime of slowly decaying perturbations, which are less understood than fast decaying and non-decaying perturbations. One of the topics is the study of oscillatory decaying perturbations, whose spectral properties show strong interplay between the frequencies of oscillation and the rate of decay. This project will seek to describe, among other things, spectral properties for very slow decay and the asymptotic behavior of the spectral density at critical points. The proposer also intends to study potentials which obey bounded variation conditions, investigating an emerging theme that conditions on derivatives of the potential can have the same spectral consequence as conditions on the potential itself. This includes the study of higher order Szegõ theorems and higher order Baxter theorems. Finally, the project includes some problems involving oscillatory, non-decaying potentials and decaying multi-dimensional Schrödinger operators.Schrödinger operators are central to quantum mechanics and their spectral properties are connected to transport properties of electrons in a given potential. Slowly decaying potentials show a mix of features of fast decaying potentials, such as those describing the field of a single particle, and oscillatory potentials, such as those corresponding to a crystal or quasicrystal. This project is expected to bridge the gap between those two regimes and have a potential impact in physics. Orthogonal polynomials are used in approximation theory and many fields of science; for instance, a recent development establishes them as a tool in the study of quantum walks, a topic in quantum computing. Graduate students participate in some of the research in this project, and this contributes to their education.
该项目研究薛定谔算子和正交多项式的谱特性,特别是在缓慢衰减扰动的情况下,这比快速衰减和非衰减扰动更难理解。其中一个主题是研究振荡衰减扰动,其频谱特性显示振荡频率和衰减速率之间的强烈相互作用。这个项目将寻求描述,除其他事项外,非常缓慢的衰减和光谱密度在临界点的渐近行为的光谱特性。提议者还打算研究服从有界变分条件的势,调查一个新兴的主题,即势的导数条件可以具有与势本身条件相同的谱结果。这包括研究高阶Szegleman定理和高阶巴克斯特定理。最后,该项目包括一些问题,涉及振荡,非衰减势和衰减多维薛定谔算子。薛定谔算子是量子力学的核心,其光谱性质与给定势中电子的输运性质有关。缓慢衰减势表现出快速衰减势(如描述单个粒子场的势)和振荡势(如对应于晶体或准晶的势)的混合特征。预计该项目将弥合这两种制度之间的差距,并在物理学方面产生潜在影响。正交多项式被用于近似理论和许多科学领域;例如,最近的发展使它们成为研究量子行走的工具,这是量子计算的一个主题。研究生参与了这个项目的一些研究,这有助于他们的教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milivoje Lukic其他文献
On a Conjecture for Higher-Order Szegő Theorems
- DOI:
10.1007/s00365-013-9197-z - 发表时间:
2012-10 - 期刊:
- 影响因子:2.7
- 作者:
Milivoje Lukic - 通讯作者:
Milivoje Lukic
Wigner-von Neumann type perturbations of periodic Schr"odinger Operators
周期性Schr"odinger算子的维格纳-冯·诺依曼型摄动
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Milivoje Lukic;Darren C. Ong - 通讯作者:
Darren C. Ong
Schrodinger operators with slowly decaying Wigner--von Neumann type potentials
具有缓慢衰减的维格纳-冯·诺依曼型势的薛定谔算子
- DOI:
10.4171/jst/41 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Milivoje Lukic - 通讯作者:
Milivoje Lukic
Square-summable variation and absolutely continuous spectrum
平方可求变分和绝对连续谱
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Milivoje Lukic - 通讯作者:
Milivoje Lukic
The Spectrum of a Schr\"odinger Operator With Small Quasi-Periodic Potential is Homogeneous
小准周期势薛定谔算子的谱是齐次的
- DOI:
10.4171/jst/128 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
D. Damanik;Michael Goldstein;Milivoje Lukic - 通讯作者:
Milivoje Lukic
Milivoje Lukic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milivoje Lukic', 18)}}的其他基金
Spectral Theory and Integrable Systems
谱理论和可积系统
- 批准号:
1700179 - 财政年份:2017
- 资助金额:
$ 12.26万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
- 批准号:
DP240101511 - 财政年份:2024
- 资助金额:
$ 12.26万 - 项目类别:
Discovery Projects
Numerical simulations of lattice field theory
晶格场论的数值模拟
- 批准号:
2902259 - 财政年份:2024
- 资助金额:
$ 12.26万 - 项目类别:
Studentship
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 12.26万 - 项目类别:
Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 12.26万 - 项目类别:
Research Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 12.26万 - 项目类别:
Continuing Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 12.26万 - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 12.26万 - 项目类别:
Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
$ 12.26万 - 项目类别:
Standard Grant