Regularity, complexity, and perturbation for C*-algebras
C* 代数的正则性、复杂性和扰动
基本信息
- 批准号:1301673
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-15 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research concerns three broad projects, each with several subproblems of varying difficulty. The first project aims to prove the equivalence of three regularity properties for separable simple nuclear C*-algebras: one topological, one homological, and one algebraic. The proof of this fact, which has recently seen rapid progress toward a solution under some restrictions on traces, would represent a deep generalization of Kirchberg's characterization of purely infinite simple nuclear C*-algebras. The second project concerns the interplay between descriptive set theory and C*-algebras, and specifically the use of the notion of Borel reducibility to answer, for various classes of functional analytic objects, the question: How complicated is isomorphism? The objects that the principal investigator will consider include nuclear, exact, and locally reflexive C*-algebras, and operator spaces and systems. The third project examines uniform perturbations of C*-algebras and the degree to which they preserve structure and invariants. Important questions here include whether or not Z-stability and stability are preserved by such perturbations.Many fields of scientific inquiry require analyzing infinite-dimensional systems and the ways in which they can be transformed. Examples include models for quantum physics, signal analysis, and weather patterns. Infinite-dimensional systems are, of course, complicated. Understanding them often proceeds by approximating them with simpler finite-dimensional systems. This project uses this approach in an effort to understand infinite-dimensional systems called C*-algebras. The finite-dimensional approximating objects are square arrays with complex number entries. Our aim is to identify conditions under which one can approximate the infinite-dimensional system arbitrarily closely using only a fixed finite number of overlapping arrays. This last property is known to have powerful consequences for the original system, consequences that reveal a great deal of detail about its structure.
这项研究涉及三个广泛的项目,每个项目都有几个不同难度的子问题。第一个项目的目的是证明可分简单核C*-代数的三个正则性的等价性:一个拓扑的,一个同调的,一个代数的。这个事实的证明,最近已经看到了快速进展的解决方案下的一些限制的痕迹,将代表一个深刻的推广基希贝格的特点,纯粹无限简单核C*-代数。 第二个项目涉及的相互作用之间的描述集理论和C*-代数,特别是使用的概念,波莱尔reductible回答,为各类功能分析对象,问题:如何复杂的是同构?主要研究者将考虑的对象包括核,精确和局部自反C*-代数,算子空间和系统。 第三个项目研究C*-代数的一致扰动以及它们保持结构和不变量的程度。 这里的重要问题包括Z稳定性和稳定性是否被这样的扰动所保持。许多科学研究领域需要分析无限维系统以及它们可以转换的方式。 例子包括量子物理学、信号分析和天气模式的模型。 无限维系统当然是复杂的。 理解它们通常通过用更简单的有限维系统近似它们来进行。 该项目使用这种方法来理解称为C*-代数的无限维系统。 有限维近似对象是具有复数项的方阵。 我们的目的是确定条件下,可以近似的无限维系统任意密切使用只有一个固定的有限数量的重叠阵列。 这最后一个属性对原始系统有着强有力的影响,这些影响揭示了关于其结构的大量细节。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Toms其他文献
Aseptic complications of total knee replacement and treatment options
- DOI:
10.1016/j.mporth.2020.12.008 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:
- 作者:
Nivraj Singh Bhamber;Ben Waterson;Andrew Toms - 通讯作者:
Andrew Toms
Andrew Toms的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Toms', 18)}}的其他基金
Operator Algebras before and after Jiang-Su Stability
江苏稳定前后的算子代数
- 批准号:
1600901 - 财政年份:2016
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
Great Plains Operator Theory Symposium 2015
2015年大平原算子理论研讨会
- 批准号:
1500915 - 财政年份:2015
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
Ninth East Coast Operator Algebras Symposium
第九届东海岸算子代数研讨会
- 批准号:
1139717 - 财政年份:2011
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
Hilbert modules and the structure of C*-algebras
Hilbert 模和 C* 代数的结构
- 批准号:
0969246 - 财政年份:2010
- 资助金额:
$ 19.44万 - 项目类别:
Continuing Grant
相似海外基金
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/S034420/2 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Fellowship
Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
- 批准号:
2404023 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Standard Grant
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
- 批准号:
2339116 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Continuing Grant
Building Molecular Complexity Through Enzyme-Enabled Synthesis
通过酶合成构建分子复杂性
- 批准号:
DE240100502 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Discovery Early Career Researcher Award
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/Y00390X/1 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Fellowship
Low-complexity配列の相分離液滴の分光学的解析法の開発
低复杂度排列相分离液滴光谱分析方法的发展
- 批准号:
23K23857 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分学习
- 批准号:
DP240102050 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Discovery Projects
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
- 批准号:
MR/X023028/1 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Fellowship
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
- 批准号:
2339711 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Continuing Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
- 批准号:
BB/Y008898/1 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Research Grant