SHF:Medium:Overcoming the Intuition Wall: Automatic Graphical Analysis of Programs to Discover and Program New Computer Architectures

SHF:中:克服直觉墙:程序的自动图形分析以发现和编程新的计算机体系结构

基本信息

  • 批准号:
    1302269
  • 负责人:
  • 金额:
    $ 40.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Workload characterization is central to development of new computer architectures. The rise of the mobile-cloud paradigm has increased the diversity and rate at which applications are created thus challenging computer architects' ability to build optimized systems for them. In the past, architects have been able to examine software codes of interest (often through slow laborious manual inspection if necessary) when releases were far and few in between to derive intuition necessary to make architectural and microarchitectural discoveries. But this method does not scale to emerging applications that are literally hammered out in the hundreds by the day. Further, new languages and platforms have behaviors that are quite different from legacy codes and there is an urgent need for intuition on these applications. Without new methods to characterize emerging workloads, computer architects risk running into an intuition wall. This risk might prove calamitous if unmitigated, given the added reliance on (micro)architects to develop more energy efficient designs to compensate for the losses due to slowdowns in Dennard's scaling.Advances in machine learning provide an opportunity to overcome the intuition wall. In the last decade there have been many major advances in machine learning on graphs motivated by need/benefits of mining behaviors in social networks and enabled by cheap commodity computing. In this project, the PIs plan to leverage these advances to discover and program new computer architectures. By viewing program execution as a graph, clustering these graphs, and mining them for similarities, the PIs plan to discover new behaviors that architects and microarchitects can use to develop new on-chip acceleration structures. The PIs also plan to study how legacy code can semi-automatically be converted to execute on the architectures with the new accelerators.
可编程特性是开发新计算机体系结构的核心。移动云模式的兴起增加了应用程序创建的多样性和速度,从而挑战了计算机架构师为其构建优化系统的能力。在过去,架构师能够检查感兴趣的软件代码(如果必要的话,通常通过缓慢而费力的手动检查),当发布之间的距离很远并且很少时,以获得进行架构和微架构发现所需的直觉。但是这种方法并不能扩展到每天都有数百个应用程序的新兴应用程序。此外,新的语言和平台具有与传统代码完全不同的行为,迫切需要对这些应用程序的直觉。如果没有新的方法来描述新兴的工作负载,计算机架构师就有可能陷入直觉的困境。如果不加以缓解,这种风险可能是灾难性的,因为(微)架构师需要开发更节能的设计,以弥补因Dennard缩放速度减慢而造成的损失。机器学习的进步为克服直觉墙提供了机会。在过去的十年中,基于社交网络中挖掘行为的需求/益处以及廉价的商品计算,图上的机器学习取得了许多重大进展。在这个项目中,PI计划利用这些进步来发现和编程新的计算机架构。通过将程序执行视为一个图,对这些图进行聚类,并挖掘它们的相似性,PI计划发现架构师和微架构师可以用来开发新的片上加速结构的新行为。PI还计划研究如何将遗留代码半自动转换为在具有新加速器的架构上执行。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vroom: Faster Build Processes for Java
Vroom:更快的 Java 构建过程
  • DOI:
    10.1109/ms.2015.32
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Bell, Jonathan;Melski, Eric;Dattatreya, Mohan;Kaiser, Gail E.
  • 通讯作者:
    Kaiser, Gail E.
Dynamic taint tracking for Java with phosphor (demo)
使用磷进行 Java 动态污点跟踪(演示)
Challenges in Behavioral Code Clone Detection
行为代码克隆检测的挑战
  • DOI:
    10.1109/saner.2016.75
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Su, Fang-Hsiang;Bell, Jonathan;Kaiser, Gail
  • 通讯作者:
    Kaiser, Gail
Challenges in Behavioral Code Clone Detection (Position Paper)
行为代码克隆检测的挑战(立场文件)
  • DOI:
    10.1109/saner.2016.7
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fang-Hsiang Su, Jonathan Bell
  • 通讯作者:
    Fang-Hsiang Su, Jonathan Bell
Code relatives: detecting similarly behaving software
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

L Sethumadhavan其他文献

L Sethumadhavan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('L Sethumadhavan', 18)}}的其他基金

Enhancing Interdisciplinary Research in Security and Computer Architecture Via Tutorial at FCRC
通过 FCRC 的教程加强安全和计算机体系结构的跨学科研究
  • 批准号:
    1137656
  • 财政年份:
    2011
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
CAREER: Trustworthy Hardware from Untrustworthy Components
职业:来自不可信组件的值得信赖的硬件
  • 批准号:
    1054844
  • 财政年份:
    2011
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
  • 批准号:
    2327438
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了