RI: Medium: Collaborative Research: Decision-Making on Uncertain Spatial-Temporal Fields: Modeling, Planning and Control with Applications to Adaptive Sampling

RI:中:协作研究:不确定时空场的决策:建模、规划和控制及其在自适应采样中的应用

基本信息

  • 批准号:
    1302302
  • 负责人:
  • 金额:
    $ 19.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

Inland bodies of freshwater are a resource that is critical for the Nation's health and safety. This project is developing a new spatio-temporal field representation suitable for modeling, planning and control under uncertainty in order to improve monitoring of such water systems. The project's focus is on a reconfigurable aquatic sensor-actuator network designed to capture data from coupled physical, chemical, and biological processes that occur across space and time-scales. The key advantages of this sensor-actuator network in its application to this domain include synoptic volume coverage, adaptive sampling, flexible control and robustness to component failure. The research objective is to build models of dynamic processes for which high resolution sampling is necessary at special locations. Toward this end, this project is contributing new methods, data-structures, algorithms, and implementations validated by field testing a heterogeneous system consisting of stationary and mobile (robotic) underwater node. This project provides unique interdisciplinary opportunities for education of both graduate and undergraduate students via new course work that blends projects and research topics directly into courses and newly developed seminars. It provides a multi-disciplinary experience for students while developing their engineering skills. Relevant components of computer science, computer engineering, and mechanical engineering are integrated together by using the project's aquatic platform and experimental scenarios as a focal point. The project advances the state-of-the-art for such systems because it integrates low-level dynamic processes with high-level planning and distributed optimization. The research represents a change in the scale of robotic aquatic sampling away from immense bodies of water in oceanographic research, toward bodies of water that have a more immediate affect on our well-being as they are sources and stores of drinking water. The impact of datasets which lead to better understanding of managed and natural inlets, differing topography including dam walls and man-made structures, regions of turbulence, and seasonal algal growth are immense.
内陆淡水是一种对国家健康和安全至关重要的资源。 该项目正在开发一种新的时空场表示法,适用于在不确定情况下的建模、规划和控制,以改善对此类水系统的监测。该项目的重点是一个可重新配置的水生传感器-执行器网络,旨在从跨空间和时间尺度发生的耦合物理,化学和生物过程中捕获数据。 这种传感器-执行器网络在其应用到这一领域的关键优势包括天气卷覆盖,自适应采样,灵活的控制和鲁棒性组件故障。 研究目标是建立动态过程的模型,其中高分辨率采样是必要的,在特殊的位置。为此,该项目正在贡献新的方法,数据结构,算法,并通过现场测试的异构系统组成的固定和移动的(机器人)水下节点验证的实现。该项目提供了独特的跨学科的机会,通过新的课程工作,融合项目和研究课题直接进入课程和新开发的研讨会的研究生和本科生的教育。它为学生提供了多学科的经验,同时发展他们的工程技能。计算机科学、计算机工程和机械工程的相关组成部分通过使用该项目的水上平台和实验场景作为重点而整合在一起。该项目推进了此类系统的最新技术,因为它将低级动态过程与高级规划和分布式优化相结合。这项研究代表了机器人水生采样规模的变化,从海洋学研究中的巨大水体,到对我们的福祉有更直接影响的水体,因为它们是饮用水的来源和储存。数据集的影响,导致更好地了解管理和自然的入口,不同的地形,包括坝墙和人造结构,湍流区域和季节性藻类生长是巨大的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srikanth Saripalli其他文献

AUTOKITE
  • DOI:
    10.1007/s10846-013-9974-8
  • 发表时间:
    2013-10-11
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Patrick McGarey;Srikanth Saripalli
  • 通讯作者:
    Srikanth Saripalli
Planning non-holonomic stable trajectories on uneven terrain through non-linear time scaling
  • DOI:
    10.1007/s10514-015-9505-5
  • 发表时间:
    2015-11-28
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Arun Kumar Singh;K. Madhava Krishna;Srikanth Saripalli
  • 通讯作者:
    Srikanth Saripalli

Srikanth Saripalli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srikanth Saripalli', 18)}}的其他基金

I-Corps: 3D Mapping and Monitoring using an Autonomous Kite UAV
I-Corps:使用自主风筝无人机进行 3D 测绘和监控
  • 批准号:
    1355360
  • 财政年份:
    2013
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
  • 批准号:
    2313137
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了