RI: Medium: Collaborative Research: Decision-Making on Uncertain Spatial-Temporal Fields: Modeling, Planning and Control with Applications to Adaptive Sampling
RI:中:协作研究:不确定时空场的决策:建模、规划和控制及其在自适应采样中的应用
基本信息
- 批准号:1302393
- 负责人:
- 金额:$ 20.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Inland bodies of freshwater are a resource that is critical for the Nation's health and safety. This project is developing a new spatio-temporal field representation suitable for modeling, planning and control under uncertainty in order to improve monitoring of such water systems. The project's focus is on a reconfigurable aquatic sensor-actuator network designed to capture data from coupled physical, chemical, and biological processes that occur across space and time-scales. The key advantages of this sensor-actuator network in its application to this domain include synoptic volume coverage, adaptive sampling, flexible control and robustness to component failure. The research objective is to build models of dynamic processes for which high resolution sampling is necessary at special locations. Toward this end, this project is contributing new methods, data-structures, algorithms, and implementations validated by field testing a heterogeneous system consisting of stationary and mobile (robotic) underwater node. This project provides unique interdisciplinary opportunities for education of both graduate and undergraduate students via new course work that blends projects and research topics directly into courses and newly developed seminars. It provides a multi-disciplinary experience for students while developing their engineering skills. Relevant components of computer science, computer engineering, and mechanical engineering are integrated together by using the project's aquatic platform and experimental scenarios as a focal point. The project advances the state-of-the-art for such systems because it integrates low-level dynamic processes with high-level planning and distributed optimization. The research represents a change in the scale of robotic aquatic sampling away from immense bodies of water in oceanographic research, toward bodies of water that have a more immediate affect on our well-being as they are sources and stores of drinking water. The impact of datasets which lead to better understanding of managed and natural inlets, differing topography including dam walls and man-made structures, regions of turbulence, and seasonal algal growth are immense.
内陆淡水是对国家健康和安全至关重要的资源。本项目正在开发一种新的时空场表示,适用于不确定条件下的建模、规划和控制,以改善对此类水系统的监测。该项目的重点是一个可重构的水生传感器-执行器网络,旨在捕获跨空间和时间尺度发生的耦合物理、化学和生物过程的数据。该传感器-执行器网络应用于该领域的主要优点包括:系统体积覆盖、自适应采样、灵活控制和对部件故障的鲁棒性。研究目标是建立在特定位置需要高分辨率采样的动态过程模型。为此,该项目提供了新的方法、数据结构、算法和实现,并通过现场测试验证了一个由固定和移动(机器人)水下节点组成的异构系统。该项目通过将项目和研究课题直接融入课程和新开发的研讨会的新课程作业,为研究生和本科生的教育提供了独特的跨学科机会。它为学生提供了一个多学科的经验,同时发展他们的工程技能。以项目的水上平台和实验场景为重点,将计算机科学、计算机工程和机械工程的相关组成部分整合在一起。该项目推进了此类系统的最先进技术,因为它将低级动态过程与高级规划和分布式优化集成在一起。这项研究代表了机器人水生采样规模的变化,从海洋学研究中的巨大水体,转向对我们的健康有更直接影响的水体,因为它们是饮用水的来源和储存。数据集的影响是巨大的,这些数据集可以更好地了解管理和自然的入口,不同的地形,包括水坝墙和人造结构,湍流区域和季节性藻类生长。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient distributed state estimation of hidden Markov Models over unreliable networks
不可靠网络上隐马尔可夫模型的高效分布式状态估计
- DOI:10.1109/mrs.2017.8250939
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Tamjidi, Amirhossein;Oftadeh, Reza;Chakravorty, Suman;Shell, Dylan
- 通讯作者:Shell, Dylan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dylan Shell其他文献
Unifying Consensus and Covariance Intersection for Efficient Distributed State Estimation Over Unreliable Networks
统一共识和协方差交集以实现不可靠网络上的高效分布式状态估计
- DOI:
10.1109/tro.2021.3064102 - 发表时间:
2021-10 - 期刊:
- 影响因子:7.8
- 作者:
Amirhossein Tamjidi;Reza Oftadeh;Mohamed Naveed Gul Mohamed;Dan Yu;Suman Chakravorty;Dylan Shell - 通讯作者:
Dylan Shell
Dylan Shell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dylan Shell', 18)}}的其他基金
The 14th International Workshop on the Algorithmic Foundations of Robotics (WAFR'20) Student Travel Awards
第 14 届机器人算法基础国际研讨会 (WAFR20) 学生旅行奖
- 批准号:
2011778 - 财政年份:2020
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Foundations of Secure Multi-Robot Computation
协作研究:EAGER:安全多机器人计算的基础
- 批准号:
2034097 - 财政年份:2020
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Planning Coordinated Event Observation for Structured Narratives
S
- 批准号:
1849249 - 财政年份:2019
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Why is Automating the Design of Robot Controllers Hard, and What Can Be Done About It
RI:小型:协作研究:为什么机器人控制器的自动化设计很难,以及可以采取什么措施
- 批准号:
1527436 - 财政年份:2015
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
CAREER: Bridging Self-Organized and Algorithmic Approaches to Multi-Robot Systems
职业:将自组织和算法方法与多机器人系统联系起来
- 批准号:
1453652 - 财政年份:2015
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR 2012-2013) Student Travel Awards
IEEE 国际安全、安保和救援机器人研讨会 (SSRR 2012-2013) 学生旅行奖
- 批准号:
1305093 - 财政年份:2013
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: A Complementarity-Free Contact Model for Robotics Applications
协作研究:机器人应用的无互补接触模型
- 批准号:
1100579 - 财政年份:2011
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011) Student Travel Awards
IEEE/RSJ 智能机器人与系统国际会议 (IROS 2011) 学生旅行奖
- 批准号:
1153994 - 财政年份:2011
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Continuing Grant