Spring School "Compactifying moduli spaces''
春季学校“压缩模空间”
基本信息
- 批准号:1302729
- 负责人:
- 金额:$ 1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-02-15 至 2014-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The summer school entitled "Compactifying Moduli Spaces" will take place at the Centre de Recerca Matematica (CRM) in Barcelona, Spain from May 27 to 31, 2013. The theme of the school is the different aspects of moduli spaces in algebraic geometry, with particular attention to questions related to compactification. Compactness is a fundamental property needed in order to apply degeneration techniques (e.g., for Brill-Noether type arguments) and for intersection theory (e.g., to define Gromov-Witten invariants). Generally, a natural moduli problem is not compact: understanding how to compactify the moduli space and how this compactification depends on choices is the main topic of the school. We will focus on two moduli problems: the moduli of varieties and the moduli of vector bundles.The school has three goals: to introduce a new generation of students and researchers to the subject; to collect and survey recent development in the theory of moduli spaces; to formulate and disseminate new problems and directions of research. There will be five mini-courses, given by the leading experts in the field. The lectures will be complemented by afternoon sessions, where young algebraic geometers will present their work and explain examples and further insights on the material seen in the main courses. This funding will be used to support the participation in the summer school of graduate students and young postdocs from universities in the U.S. The conference website is http://www.crm.cat/en/Activities/Pages/ActivityDescriptions/Compactifying-Moduli-Spaces.aspx
题为“压缩模数空间”的暑期班将于2013年5月27日至31日在西班牙巴塞罗那的马泰马蒂卡中心(CRM)举行。该学派的主题是代数几何中模空间的不同方面,特别关注与紧化有关的问题。紧致性是应用退化技术(例如,对于Brill-Noether类型变元)和交集理论(例如,定义Gromov-Witten不变量)所需的基本性质。一般来说,自然模问题不是紧致的:理解如何紧致模空间以及这种紧致如何依赖于选择是该学派的主要主题。我们将集中讨论两个模问题:簇的模和向量丛的模。该学派有三个目标:介绍新一代学生和研究人员;收集和综述模空间理论的最新发展;阐述和传播新的问题和研究方向。将有五个小型课程,由该领域的领先专家讲授。课程将由下午的课程补充,年轻的代数几何学家将介绍他们的工作,并解释主要课程中所看到的材料的例子和进一步的见解。这笔资金将用于支持来自美国大学的研究生和年轻博士后参加暑期学校。会议的网站是http://www.crm.cat/en/Activities/Pages/ActivityDescriptions/Compactifying-Moduli-Spaces.aspx
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emanuele Macri其他文献
Emanuele Macri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emanuele Macri', 18)}}的其他基金
Birational Geometry and Bridgeland Stability Conditions
双有理几何和布里奇兰稳定性条件
- 批准号:
1700751 - 财政年份:2017
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Moduli spaces of objects in derived categories
派生类别中对象的模空间
- 批准号:
1160466 - 财政年份:2011
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Moduli spaces of objects in derived categories
派生类别中对象的模空间
- 批准号:
1001482 - 财政年份:2010
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
相似海外基金
RUI: Compactifying Moduli Spaces of Orbits, Covers, and Curves
RUI:压缩轨道、覆盖和曲线的模空间
- 批准号:
2001439 - 财政年份:2020
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Analysis of the universal compactifying space
通用压缩空间分析
- 批准号:
23740017 - 财政年份:2011
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Young Scientists (B)