Sheaves on higher dimensional varieties

高维品种的滑轮

基本信息

  • 批准号:
    1302730
  • 负责人:
  • 金额:
    $ 16.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2015-02-28
  • 项目状态:
    已结题

项目摘要

The central theme of the project is to apply derived category techniques to solve questions arising from Birational Geometry and String Theory. In particular, the P.I. has three main goals:(1) To study moduli spaces of stable sheaves on surfaces, by using wall-crossing with respect to Bridgeland stability conditions.(2) To prove a conjectural bound on Chern classes of certain stable complexes on threefolds, which generalizes a classical result by Bogomolov and Gieseker.(3) To study sheaves on projective spaces, cubic hypersurfaces, and the Grothendieck-Knudsen moduli space of stable n-pointed rational curves.Far-reaching applications would include Le Potier's Strange Duality Conjecture, the existence of Bridgeland stability conditions on Calabi-Yau threefolds, the Fujita Conjecture on adjoint linear series for threefolds, and new results in the theory of counting invariants.The broader context of this project is the area of Algebraic Geometry. The central objects of interest in Algebraic Geometry are algebraic varieties, namely the loci of solutions of polynomial equations in many variables. Roughly, the idea is to study algebraic varieties "indirectly," by using certain "homological" invariants associated to geometric objects on them -- for example, differential forms. The technique of the derived category was developed in Verdier's thesis, under the guidance of Grothendieck, in 1967. The original motivation was the need to find a proper foundation for Grothendieck's duality theory, which provides non-trivial relations among the above mentioned invariants. More recently, the theory of derived categories has found important and deep applications beyond the original motivation and even outside Algebraic Geometry; in particular, to Representation Theory, Symplectic Geometry, and High Energy Physics.The present proposal builds indeed on the interaction with these disciplines -- notably on the work of Kontsevich, Bondal, Orlov, Bridgeland, Kuznetsov among others -- to deduce new results in Algebraic Geometry and other areas.
该项目的中心主题是应用派生类技术来解决双有理几何和弦理论所产生的问题。特别是,P.I.主要有三个目的:(1)利用Bridgeland稳定性条件的跨壁方法研究曲面上稳定层的模空间。(2)证明了一类三重稳定复形的Chern类的一个上界,推广了Bogomolov和Gieseker的一个经典结果. (3)研究射影空间、三次超曲面和稳定n点有理曲线的Grothendieck-Knudsen模空间上的层,其深远的应用包括Le Potier的奇异对偶猜想、Calabi-Yau三重上Bridgeland稳定性条件的存在性、三重上伴随线性级数的Fujita猜想、以及计数不变量理论的新成果。这个项目更广泛的背景是代数几何领域。代数几何中感兴趣的中心对象是代数簇,即多变量多项式方程的解的轨迹。粗略地说,这个想法是“间接地”研究代数簇,通过使用某些与几何对象相关的“同调”不变量-例如,微分形式。导出范畴的技术是在1967年格罗滕迪克的指导下,在Verdier的论文中发展起来的。最初的动机是需要找到一个适当的基础格罗滕迪克的对偶理论,它提供了非平凡的关系,上述不变量。近年来,导出范畴理论在代数几何之外也有了重要而深刻的应用;特别是表示论,辛几何和高能物理。本建议确实建立在与这些学科的相互作用上--特别是在Kontsevich,Bondal,奥尔洛夫,Bridgeland,库兹涅佐夫等人-推导出代数几何和其他领域的新成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emanuele Macri其他文献

Emanuele Macri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emanuele Macri', 18)}}的其他基金

Birational Geometry and Bridgeland Stability Conditions
双有理几何和布里奇兰稳定性条件
  • 批准号:
    1700751
  • 财政年份:
    2017
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Sheaves on higher dimensional varieties
高维品种的滑轮
  • 批准号:
    1523496
  • 财政年份:
    2015
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Spring School "Compactifying moduli spaces''
春季学校“压缩模空间”
  • 批准号:
    1302729
  • 财政年份:
    2013
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Moduli spaces of objects in derived categories
派生类别中对象的模空间
  • 批准号:
    1160466
  • 财政年份:
    2011
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Moduli spaces of objects in derived categories
派生类别中对象的模空间
  • 批准号:
    1001482
  • 财政年份:
    2010
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant

相似国自然基金

Higher Teichmüller理论中若干控制型问题的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高桡度(Higher-Twist)算符和量子色动力学因子化
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
  • 批准号:
    2341368
  • 财政年份:
    2024
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Conference: Higher dimensional algebraic geometry
会议:高维代数几何
  • 批准号:
    2327037
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Combinatorial Objects and Actions in Higher Dimensional Settings
高维设置中的组合对象和动作
  • 批准号:
    2247089
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Continuing Grant
VIS4ION-Thailand (Visually Impaired Smart Service System for Spatial Intelligence and Onboard Navigation) - Resub - 1
VIS4ION-泰国(视障空间智能和车载导航智能服务系统)- Resub - 1
  • 批准号:
    10903051
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
CAREER: K-stability and moduli spaces of higher dimensional varieties
职业:K-稳定性和高维簇的模空间
  • 批准号:
    2237139
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Continuing Grant
Deciphering Mechanisms of Limb Malformations Caused by Noncoding Variants In Vivo
体内非编码变异引起肢体畸形的破译机制
  • 批准号:
    10538362
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
Re-examination of classical problems in low-dimensional topology from higher invariants
从更高的不变量重新审视低维拓扑中的经典问题
  • 批准号:
    23K03110
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Moduli of higher dimensional varieties and families of hypersurfaces
高维簇和超曲面族的模
  • 批准号:
    2302163
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Universal Aspects of Quantum Entanglement in Higher Dimensional Disordered Quantum Magnets
高维无序量子磁体中量子纠缠的普遍现象
  • 批准号:
    2310706
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Role of nucleosome architecture in cellular reprogramming
核小体结构在细胞重编程中的作用
  • 批准号:
    10567857
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了