Noncongruence Modular Farms and Supercongruences
非全等模块化农场和超全等
基本信息
- 批准号:1303292
- 负责人:
- 金额:$ 13.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modular forms are spectacular functions that are highly symmetric. They occur in abundance throughout mathematics and physics. For more than one century, the theory of modular forms has being playing a central role in number theory, as witnessed in the proof of Fermat's Last Theorem. The symmetries of modular forms are captured by the elements of the special linear group of degree 2 over the ring of integers. Among all modular forms, majority of them are noncongruence in the sense that their symmetries cannot be described by congruences. The study of noncongruence modular forms has been fallen behind its congruence counterpart due to the lack of a satisfactory Hecke theory. However, recent progresses on noncongruence modular forms have revealed their rich connections with several fruitful research frontiers: p-adic modular forms, automorphic forms, and Galois representations. The theory of noncongruence modular forms has far reaching impacts on other areas like the conformal field theory and combinatorics. The project aims at a further theoretic development of noncongruence modular forms with applications to problems like supercongruences, which are special congruences satisfied by many interesting combinatorial or arithmetic sequences. The scientific objectives are: study when Galois representations attached to noncongruence modular forms are related to automorphic forms via Langlands correspondence; understand a fundamental conjecture that characterizes genuine noncongruence modular forms; explore supercongruences using the perspective of Atkin and Swinnerton-Dyer congruences that were originated in the study of noncongruence modular forms. Currently, the proofs of supercongruences often require the finding of auxiliary identities, which procedure often involves intriguing guesses. A more conceptual understanding of supercongruences may shed lights on how to search for these identities systematically.The research outcomes will be published by high quality journals and disseminated at various conferences and seminars. The PI will continue to widen the impacts of the her research program by mentoring undergraduate students, graduate students, and postdocs, as well as organizing scientific conferences. In recent years, the PI has been seriously involved in activities to promote the advancement of women in mathematics. She was a group co-leader for Banff International Research Station workshops on Women in Numbers (WIN) in 2008 and WIN2 in 2011 and is one of the organizers for a coming WIN 3 conference in 2014.
模形式是高度对称的壮观函数。它们在数学和物理中大量出现。一个多世纪以来,模形式理论一直在数论中发挥着核心作用,正如费马大定理的证明所证明的那样。模形式的对称性是由整数环上特殊的2次线性群的元素所捕获的。在所有模形式中,大多数模形式是不同余的,即它们的对称性不能用同余来描述。由于缺乏令人满意的赫克理论,非同余模形式的研究一直落后于同余模形式的研究。然而,近年来非同余模形式的研究进展揭示了它们与p进模形式、自同构形式和伽罗瓦表示等几个富有成果的研究前沿之间的丰富联系。非同余模形式理论对共形场论和组合学等领域产生了深远的影响。本课题的目的是在理论上进一步发展非同余模形式,并将其应用于超同余问题,如许多有趣的组合或等差数列所满足的特殊同余。科学目标是:研究附加在非同余模形式上的伽罗瓦表示如何通过朗兰兹对应与自同构形式相关联;理解真正的非同余模形式的一个基本猜想;利用起源于非同余模形式研究的Atkin和Swinnerton-Dyer同余的观点探索超同余。目前,超同余的证明往往需要寻找辅助恒等式,这一过程往往涉及有趣的猜测。对超同余的更概念化的理解可能会揭示如何系统地寻找这些身份。研究成果将在高质量的期刊上发表,并在各种会议和研讨会上传播。PI将通过指导本科生、研究生和博士后,以及组织科学会议,继续扩大她的研究项目的影响。近年来,PI一直认真参与促进妇女在数学方面的进步的活动。她是班夫国际研究站2008年和2011年妇女人数研讨会(WIN)和WIN2的小组共同负责人,也是2014年即将举行的win3会议的组织者之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ling Long其他文献
On Hopf Algebras of Dimension 4p Table of Contents
关于 4p 维 Hopf 代数 目录
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Yi;S. Ng;L. Hogben;Jonathan D. H. Smith;Sung Y. Song;Ling Long - 通讯作者:
Ling Long
A Comparison of the Performance of Two Kinds of Waterborne Coatings on Bamboo and Bamboo Scrimber
两种水性涂料在竹材及重组竹上的性能比较
- DOI:
10.3390/coatings9030161 - 发表时间:
2019-03 - 期刊:
- 影响因子:3.4
- 作者:
Jianfeng Xu;Ru Liu;Huagui Wu;Hongyun Qiu;Yanglun Yu;Ling Long;Yonghao Ni - 通讯作者:
Yonghao Ni
Research on fluid flow and heat transfer characteristics in a three-dimensional condenser
- DOI:
10.1016/j.anucene.2024.110967 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Zhiqiang Duan;Yuan Tian;Siyuan Wang;Ling Long;Jianjun Deng - 通讯作者:
Jianjun Deng
Honeycomb-like 3D N,P-codoped porous carbon anchored with ultrasmall Fe2P nanocrystals for efficient Zn-air battery.
蜂窝状 3D N、P 共掺杂多孔碳锚定有超小 Fe2P 纳米晶体,用于高效锌空气电池。
- DOI:
10.1016/j.carbon.2019.11.073 - 发表时间:
2020 - 期刊:
- 影响因子:10.9
- 作者:
Lulu Chen;Yelong Zhang;Lile Dong;Xiangjian Liu;Ling Long;Siyu Wang;Changyu Liu;Shaojun Dong;Jianbo Jia - 通讯作者:
Jianbo Jia
Facile Engineering Indomethacin Induced Paclitaxel Nanocrystal Aggregates as Carrier-Free Nanomedicine with Improved Synergetic Antitumor Activity
简便工程吲哚美辛诱导的紫杉醇纳米晶体聚集体作为无载体纳米药物,具有改进的协同抗肿瘤活性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Chengyuan Zhang;Ling Long;Yao Xiong;Chenping Wang;Cuiping Peng;Yuchuan Yuan;Zhirui Liu;Yongyao Lin;Yi Jia;Xing Zhou;Xiaohui Li - 通讯作者:
Xiaohui Li
Ling Long的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ling Long', 18)}}的其他基金
The Arithmetic of Hypergeometric Varieties and Noncongruence Modular Forms
超几何簇和非全等模形式的算术
- 批准号:
1602047 - 财政年份:2016
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant
Workshop on Hypergeometric Motives and Calabi-Yau Differential Equations
超几何动机和卡拉比-丘微分方程研讨会
- 批准号:
1642598 - 财政年份:2016
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant
Applications of Automorphic Forms in Number Theory and Combinatorics
自守形式在数论和组合学中的应用
- 批准号:
1363265 - 财政年份:2014
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant
Modular Forms for Noncongruence Subgroups
非同余子群的模形式
- 批准号:
1001332 - 财政年份:2010
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant
相似国自然基金
基于Modular积图和最大团的草图形状匹配技术研究
- 批准号:61305091
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
- 批准号:
10109981 - 财政年份:2024
- 资助金额:
$ 13.38万 - 项目类别:
EU-Funded
High-Efficiency, Modular and Low-Cost Hydrogen Liquefaction and Storage
高效、模块化、低成本的氢气液化和储存
- 批准号:
DE240100863 - 财政年份:2024
- 资助金额:
$ 13.38万 - 项目类别:
Discovery Early Career Researcher Award
Host-Guest Complexation: A Modular Approach for Structural Control (MAS-Control) in Supramolecular Polymerization
主客体络合:超分子聚合中结构控制(MAS-Control)的模块化方法
- 批准号:
EP/Y027965/1 - 财政年份:2024
- 资助金额:
$ 13.38万 - 项目类别:
Fellowship
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
- 批准号:
2337830 - 财政年份:2024
- 资助金额:
$ 13.38万 - 项目类别:
Continuing Grant
Discovering Modular Catalysts for Selective Synthesis with Computation
通过计算发现用于选择性合成的模块化催化剂
- 批准号:
2400056 - 财政年份:2024
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
- 批准号:
2401152 - 财政年份:2024
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
- 批准号:
2401384 - 财政年份:2024
- 资助金额:
$ 13.38万 - 项目类别:
Continuing Grant
STTR Phase I: Microwave-Enhanced Modular Ammonia Synthesis
STTR 第一阶段:微波增强模块化氨合成
- 批准号:
2335104 - 财政年份:2024
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
- 批准号:
2335583 - 财政年份:2024
- 资助金额:
$ 13.38万 - 项目类别:
Standard Grant
Unlocking the secrets of modular representations
解开模块化表示的秘密
- 批准号:
FL230100256 - 财政年份:2024
- 资助金额:
$ 13.38万 - 项目类别:
Australian Laureate Fellowships