Modular Forms for Noncongruence Subgroups

非同余子群的模形式

基本信息

  • 批准号:
    1001332
  • 负责人:
  • 金额:
    $ 14.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

In recent years, stunning advances have been made in the study of modular forms for congruence subgroups: the settlements of the Taniyama-Shimura-Weil conjecture and Serre's conjecture, to name a few. On modular forms for noncongruence subgroups, rapid progress has also been made recently. While our knowledge of noncongruence modular forms is still in its relative infancy, the subject has already shown its rich connections with several fruitful research frontiers: classical modular forms, Galois representations, the Langlands program, and p-adic modular forms. The general aim of this proposal is to continue the development of noncongruence modular forms by the PI and her collaborators. The proposal contains 3 objectives: 1) To study when Galois representations attached to noncongruence cusp forms constructed by A. Scholl are related to classical automorphic forms via Langlands correspondence, as well as the applications of a relation. 2) To understand a fundamental conjecture which asserts that Fourier coefficients of genuine noncongruence modular forms have unbounded denominators if all coefficients are algebraic. 3) To explore p-adic properties of noncongruence modular forms and their applications to other research areas.Starting from the time of the Greeks, many great problems in number theory have challenged intellectual minds, and their considerations have provided numerous useful applications in turn. This proposal emphasizes theoretic developments, broad applications, as well as educating students. As a developing area, the theory of noncongruence modular form contains a wide spectrum of topics. Some suitable projects will be incorporated in the learning and training of graduate and advanced undergraduate students. The outcome will be disseminated widely through referred journal articles, seminar and conference talks, as well as topics for graduate courses.
近年来,同余子群模形式的研究取得了惊人的进展:Taniyama-Shimura-Weil猜想和Serre猜想的解决,仅举几例。关于非同余子群的模形式,近年来也取得了迅速的进展。虽然我们对非全等模形式的认识还处于相对的初级阶段,但这个主题已经显示出它与几个富有成果的研究前沿的丰富联系:经典模形式,伽罗瓦表示,朗兰兹纲领和p-adic模形式。这个建议的总体目标是继续PI和她的合作者开发非一致模块形式。该方案包含3个目标:1)研究何时伽罗瓦表示附加到A. Scholl通过朗兰兹对应与经典自守形式相关,以及关系的应用。2)理解一个基本猜想,该猜想断言,如果所有系数都是代数的,则真正的非同余模形式的傅立叶系数具有无界的代数子。3)探讨非全余模形式的p-adic性质及其在其他研究领域的应用。从古希腊人开始,数论中的许多重大问题就向知识分子提出了挑战,而对它们的思考又提供了许多有用的应用。这一建议强调理论的发展,广泛的应用,以及教育学生。作为一个发展中的领域,非同余模形式理论包含着广泛的内容。一些合适的项目将被纳入研究生和高年级本科生的学习和培训。研究成果将通过期刊文章、研讨会和会议演讲以及研究生课程专题广泛传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ling Long其他文献

On Hopf Algebras of Dimension 4p Table of Contents
关于 4p 维 Hopf 代数 目录
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi;S. Ng;L. Hogben;Jonathan D. H. Smith;Sung Y. Song;Ling Long
  • 通讯作者:
    Ling Long
A Comparison of the Performance of Two Kinds of Waterborne Coatings on Bamboo and Bamboo Scrimber
两种水性涂料在竹材及重组竹上的性能比较
  • DOI:
    10.3390/coatings9030161
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Jianfeng Xu;Ru Liu;Huagui Wu;Hongyun Qiu;Yanglun Yu;Ling Long;Yonghao Ni
  • 通讯作者:
    Yonghao Ni
Research on fluid flow and heat transfer characteristics in a three-dimensional condenser
  • DOI:
    10.1016/j.anucene.2024.110967
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zhiqiang Duan;Yuan Tian;Siyuan Wang;Ling Long;Jianjun Deng
  • 通讯作者:
    Jianjun Deng
Honeycomb-like 3D N,P-codoped porous carbon anchored with ultrasmall Fe2P nanocrystals for efficient Zn-air battery.
蜂窝状 3D N、P 共掺杂多孔碳锚定有超小 Fe2P 纳米晶体,用于高效锌空气电池。
  • DOI:
    10.1016/j.carbon.2019.11.073
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Lulu Chen;Yelong Zhang;Lile Dong;Xiangjian Liu;Ling Long;Siyu Wang;Changyu Liu;Shaojun Dong;Jianbo Jia
  • 通讯作者:
    Jianbo Jia
Facile Engineering Indomethacin Induced Paclitaxel Nanocrystal Aggregates as Carrier-Free Nanomedicine with Improved Synergetic Antitumor Activity
简便工程吲哚美辛诱导的紫杉醇纳米晶体聚集体作为无载体纳米药物,具有改进的协同抗肿瘤活性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chengyuan Zhang;Ling Long;Yao Xiong;Chenping Wang;Cuiping Peng;Yuchuan Yuan;Zhirui Liu;Yongyao Lin;Yi Jia;Xing Zhou;Xiaohui Li
  • 通讯作者:
    Xiaohui Li

Ling Long的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ling Long', 18)}}的其他基金

The Arithmetic of Hypergeometric Varieties and Noncongruence Modular Forms
超几何簇和非全等模形式的算术
  • 批准号:
    1602047
  • 财政年份:
    2016
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Standard Grant
Workshop on Hypergeometric Motives and Calabi-Yau Differential Equations
超几何动机和卡拉比-丘微分方程研讨会
  • 批准号:
    1642598
  • 财政年份:
    2016
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Standard Grant
Applications of Automorphic Forms in Number Theory and Combinatorics
自守形式在数论和组合学中的应用
  • 批准号:
    1363265
  • 财政年份:
    2014
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Standard Grant
Noncongruence Modular Farms and Supercongruences
非全等模块化农场和超全等
  • 批准号:
    1303292
  • 财政年份:
    2013
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
  • 批准号:
    2337830
  • 财政年份:
    2024
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Continuing Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
  • 批准号:
    2401152
  • 财政年份:
    2024
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347096
  • 财政年份:
    2024
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Standard Grant
Conference: International Conference on L-functions and Automorphic Forms
会议:L-函数和自同构国际会议
  • 批准号:
    2349888
  • 财政年份:
    2024
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347095
  • 财政年份:
    2024
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347097
  • 财政年份:
    2024
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Standard Grant
Automorphic Forms and the Langlands Program
自守形式和朗兰兹纲领
  • 批准号:
    2401353
  • 财政年份:
    2024
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Continuing Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
  • 批准号:
    2401548
  • 财政年份:
    2024
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Continuing Grant
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
  • 批准号:
    2401444
  • 财政年份:
    2024
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Standard Grant
Development of a food bolus formation ability evaluation system to support the selection of appropriate food forms.
开发食物团形成能力评估系统以支持选择合适的食物形式。
  • 批准号:
    23K09279
  • 财政年份:
    2023
  • 资助金额:
    $ 14.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了