p-adic aspects of the Langlands program

朗兰兹纲领的 p-adic 方面

基本信息

  • 批准号:
    1303450
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

The goal of the proposed project is to investigate the p-adic aspects of the Langlands program. At the heart of the Langlands program is a conjectured reciprocity law relating automorphic representations of a certain type (namely those whose Langlands parameter at the archimedean place is ``integral'', or ``algebraic'') to Galois representations arising from the etale cohomology of algebraic varieties over number fields (i.e. Galois representations that are ``motivic''). A basic fact in the theory of Galois representations is that such representations are naturally parametrized by certain p-adic analytic spaces (Galois deformation spaces), in which the motivic Galois representations float in a much larger sea of non-motivic representations. Studying this entire sea of Galois representations is an interesting and important problem, which turns out to be of fundamental importance even if one is ultimately interested only in the motivic points of this space, since most successful approaches to establishing reciprocity have involved p-adically interpolating information across the sea of all Galois representations. In the case of two-dimensional representations of the absolute Galois group of Q, the proposer has proved the desired reciprocity in most cases, by establishing a local-global compatibility result relating the p-adically completed cohomology of modular curves to the p-adic local Langlands correspondence of Breuil, Colmez, and Paskunas. The proposed project involves generalizing these results to other contexts, such as to representations of the/absolute Galois group of a totally real field. Since there isno construction of a p-adic local Langlands correspondence in this case, a major part of the project will involve constructing such a correspondence.Number theory is the branch of mathematics that studies phenomena related to properties of whole numbers. A typical number theoretic question is to determine the number of whole number solutions of some equation of interest. The answers to such questions can often be encoded in certain mathematical functions known as L-functions. The mathematician Robert Langlands has developed a series of conjectures (or mathematical predictions) regarding L-functions, which predict that any L-function should arise from another kind of mathematical function called an automorphic form. (Number theorists refer to Langlands conjectured relationship between L-functions and automorphic forms as a ``reciprocity law''.) Langlands developed an array of powerful representation theoretic methods to study his conjectures. These are methods that exploit the many symmetries of automorphic forms and L-functions to analyze their mathematical properties; these methods have been incorporated into a body of mathematics known as ``the Langlands program''. A more recent approach to the study of automorphic forms and L-functions is the use of p-adic methods. These are methods that involve using divisibility properties with respect to some fixed prime number p to study the Taylor series coefficients of the automorphic forms and L-functions. Recently,the representation theoretic methods and p-adic methods have begun to be unified into a so-called ``p-adic Langlands program''. The proposer aims to develop new results and methods in the p-adic Langlands program, and to use them to establish new results about L-functions, and, in particular, to establish new reciprocity laws.
拟议项目的目标是调查朗兰兹方案的P-ADY方面。朗兰兹程序的核心是一种猜想的互易律,它将某种类型的自同构表示(即那些朗兰兹参数在阿基米德位置为‘’积分‘’或‘’代数‘’的表示)与由数域上代数簇的上同调产生的伽罗瓦表示(即‘Motivic’的伽罗瓦表示)联系起来。伽罗瓦表示理论中的一个基本事实是,这种表示自然地被某些p-进解析空间(伽罗瓦变形空间)参数化,在这些空间中,动机伽罗瓦表示漂浮在更大的非动机表示的海洋中。研究整个伽罗瓦表示的海洋是一个有趣而重要的问题,事实证明,即使一个人最终只对这个空间的理据点感兴趣,这也是非常重要的,因为大多数建立互易性的成功方法都涉及到跨所有伽罗瓦表示的海洋以p-adad方式插补信息。在Q的绝对伽罗华群的二维表示的情况下,通过建立模曲线的p-adad完备上同调与Breuil、Colmez和Paskunas的p-进局部朗兰兹对应之间的局部-整体相容结果,作者证明了在大多数情况下期望的互易性。建议的项目涉及将这些结果推广到其他上下文,例如全实域的/绝对伽罗瓦群的表示。由于在这种情况下不存在p进局部朗兰兹对应的构造,该项目的主要部分将涉及构造这样的对应。数论是数学的一个分支,研究与整数的性质有关的现象。一个典型的数论问题是确定某个感兴趣的方程的整数解的个数。这类问题的答案通常可以编码成称为L函数的某些数学函数。数学家罗伯特·朗兰兹发展了一系列关于L函数的猜想(或数学预测),这些猜想(或数学预测)预言,任何L函数都应该由另一种称为自同构形的数学函数产生。(数学家将朗兰兹猜想的L函数与自同构形之间的关系称为“互易定律”。)朗兰兹发展了一系列强有力的表征理论方法来研究他的猜想。这些方法利用了自同构形和L函数的许多对称性来分析它们的数学性质;这些方法已经被合并到一个被称为“朗兰兹计划”的数学体系中。研究自同构型和L函数的一种较新的方法是使用p-进方法。这些方法涉及利用关于某个固定素数p的可除性来研究自同构型和L函数的泰勒级数系数。最近,表示理论方法和p-进方法开始被统一为所谓的“p-进朗兰兹方案”。本文的目的是在p-adic朗兰兹程序中发展新的结果和方法,并利用它们建立关于L函数的新结果,特别是建立新的互易定律。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Emerton其他文献

Optimal quotients of modular Jacobians
  • DOI:
    10.1007/s00208-003-0449-2
  • 发表时间:
    2003-09-10
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Matthew Emerton
  • 通讯作者:
    Matthew Emerton

Matthew Emerton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Emerton', 18)}}的其他基金

Arithmetic Aspects of the Langlands Program
朗兰兹纲领的算术方面
  • 批准号:
    2201242
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Geometric Structures in the p-Adic Langlands Program
FRG:合作研究:p-Adic Langlands 计划中的几何结构
  • 批准号:
    1952705
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Automorphic Forms and Galois Representations
自守形式和伽罗瓦表示
  • 批准号:
    1902307
  • 财政年份:
    2019
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
P-adic Aspects of the Langlands Program
朗兰兹纲领的 P-adic 方面
  • 批准号:
    1601871
  • 财政年份:
    2016
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
P-adic aspects of the Langlands program
朗兰兹计划的 P-adic 方面
  • 批准号:
    1249548
  • 财政年份:
    2012
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Special Meeting: Galois Representations, Diophantine Equations, and Automorphic Forms
特别会议:伽罗瓦表示、丢番图方程和自守形式
  • 批准号:
    1101503
  • 财政年份:
    2011
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
P-adic aspects of the Langlands program
朗兰兹计划的 P-adic 方面
  • 批准号:
    1002339
  • 财政年份:
    2010
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
p-adic Aspects of the Langlands Program
朗兰兹纲领的 p-adic 方面
  • 批准号:
    0701315
  • 财政年份:
    2007
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Locally analytic representation theory and p-adic interpolation
局部解析表示理论和p进插值
  • 批准号:
    0401545
  • 财政年份:
    2004
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
A p-Adic Riemann-Hilbert Correspondence and A p-Adic Theory of Mixed Hodge Modules
p-Adic黎曼-希尔伯特对应和混合Hodge模的p-Adic理论
  • 批准号:
    0241562
  • 财政年份:
    2002
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
  • 批准号:
    60503032
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
  • 批准号:
    EP/Y030249/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grant
Combinational, Structural and algorithmic aspects of temporal graphs
时间图的组合、结构和算法方面
  • 批准号:
    2903280
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Studentship
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
  • 批准号:
    2340195
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Aspects and Functions of Legal Principles in Civil Law Interpretation
民法解释中法律原则的方面和作用
  • 批准号:
    23K01192
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
  • 批准号:
    2882187
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Studentship
Various Aspects of the Mechanistic Views of Nature in the Late 19th Century
19世纪末自然机械论的各个方面
  • 批准号:
    23K00265
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Aspects of Polish group dynamics
波兰团体动态的各个方面
  • 批准号:
    2246873
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Conference: Human, Engineering, and Scientific Aspects of Disease Transmission in Natural and Built Environments
会议:自然和建筑环境中疾病传播的人类、工程和科学方面
  • 批准号:
    2332366
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
AF: Small: Theoretical Aspects of Repetition-Aware Text Compression and Indexing
AF:小:重复感知文本压缩和索引的理论方面
  • 批准号:
    2315822
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了