Arithmetic Aspects of the Langlands Program
朗兰兹纲领的算术方面
基本信息
- 批准号:2201242
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Number theory is the branch of mathematics that studies phenomena related to properties of whole numbers. A typical number theoretic question is to find all the whole number solutions of some equation of interest. By synthesizing the topological and algebraic properties of the graphs of these equations, one obtains a mathematical object (a collection of mathematical data) called a Galois representation which encodes many of the properties of the originating equation. The mathematician Robert Langlands has developed a series of conjectures (or mathematical predictions) which anticipate a very close relationship between these Galois representations and some very different kinds of group representations, known as automorphic representations, which arise out of mathematical analysis. The goal of this project is to make progress on Langlands's conjectures by placing them in various more structural geometric frameworks, and then to use geometric methods and perspectives to establish relationships between these two different kinds of representations (Galois and automorphic). The project provides training opportunities for graduate students.The goal of the research project is to investigate both local and global aspects of the arithmetic Langlands program. The principal investigator, Dr. Matthew Emerton, will construct moduli stacks of global Galois representations, and study their geometric properties, as well as the properties of the global-to-local restriction maps which map them to (products of) moduli stacks of local Galois representations. These investigations are closely related to the problem of extending the Taylor--Wiles--Kisin patching method to the residually reducible case, and to the study of the Eisenstein part of cohomology, and Dr. Emerton will pursue these relationships, especially in the context of odd two-dimensional representations, which are connected to the cohomology of modular curves. Dr. Emerton will also develop a new approach to the mod p deformation theory of crystalline local-at-p Galois representations, via their relationship to prismatic F-crystals and gauges. The resulting improved understanding of this deformation theory should lead to new global results, such as new cases of the weight part of Serre's conjecture and new cases of the Breuil--Mezard conjecture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数论是数学的一个分支,研究与整数性质有关的现象。一个典型的数论问题是求某个方程的所有整数解。通过综合这些方程的图形的拓扑和代数性质,人们获得了一个称为伽罗瓦表示的数学对象(数学数据的集合),它编码了原始方程的许多性质。数学家罗伯特·朗兰兹(Robert Langlands)发展了一系列的数学预言(或数学预言),这些预言预测了这些伽罗瓦表示与一些非常不同的群表示之间的密切关系,这些群表示被称为自守表示,它们产生于数学分析。 该项目的目标是通过将朗兰兹的几何结构置于各种更结构化的几何框架中来取得进展,然后使用几何方法和视角来建立这两种不同类型的表示(伽罗瓦和自守)之间的关系。该项目为研究生提供培训机会。研究项目的目标是调查算术朗兰兹程序的局部和全局方面。 首席研究员Matthew Emerton博士将构建全局Galois表示的模堆栈,并研究它们的几何性质,以及将它们映射到局部Galois表示的模堆栈(的产品)的全局到局部限制映射的性质。 这些调查是密切相关的问题扩展泰勒-怀尔斯-基辛修补方法的剩余可约的情况下,和研究的爱森斯坦部分的上同调,和埃默顿博士将追求这些关系,特别是在上下文中的奇数二维表示,这是连接到上同调的模曲线。 Emerton博士还将开发一种新的方法来研究晶体局部p伽罗瓦表示的mod p变形理论,通过它们与棱柱F晶体和量规的关系。 对这种变形理论的进一步理解应该会带来新的全球结果,例如Serre猜想重量部分的新案例和Breuil-Mezard猜想的新案例。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Emerton其他文献
Optimal quotients of modular Jacobians
- DOI:
10.1007/s00208-003-0449-2 - 发表时间:
2003-09-10 - 期刊:
- 影响因子:1.400
- 作者:
Matthew Emerton - 通讯作者:
Matthew Emerton
Matthew Emerton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Emerton', 18)}}的其他基金
FRG: Collaborative Research: Geometric Structures in the p-Adic Langlands Program
FRG:合作研究:p-Adic Langlands 计划中的几何结构
- 批准号:
1952705 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Automorphic Forms and Galois Representations
自守形式和伽罗瓦表示
- 批准号:
1902307 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
P-adic Aspects of the Langlands Program
朗兰兹纲领的 P-adic 方面
- 批准号:
1601871 - 财政年份:2016
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
p-adic aspects of the Langlands program
朗兰兹纲领的 p-adic 方面
- 批准号:
1303450 - 财政年份:2013
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
P-adic aspects of the Langlands program
朗兰兹计划的 P-adic 方面
- 批准号:
1249548 - 财政年份:2012
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Special Meeting: Galois Representations, Diophantine Equations, and Automorphic Forms
特别会议:伽罗瓦表示、丢番图方程和自守形式
- 批准号:
1101503 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
P-adic aspects of the Langlands program
朗兰兹计划的 P-adic 方面
- 批准号:
1002339 - 财政年份:2010
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
p-adic Aspects of the Langlands Program
朗兰兹纲领的 p-adic 方面
- 批准号:
0701315 - 财政年份:2007
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Locally analytic representation theory and p-adic interpolation
局部解析表示理论和p进插值
- 批准号:
0401545 - 财政年份:2004
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
A p-Adic Riemann-Hilbert Correspondence and A p-Adic Theory of Mixed Hodge Modules
p-Adic黎曼-希尔伯特对应和混合Hodge模的p-Adic理论
- 批准号:
0241562 - 财政年份:2002
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
相似国自然基金
基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
- 批准号:60503032
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Research Grant
Combinational, Structural and algorithmic aspects of temporal graphs
时间图的组合、结构和算法方面
- 批准号:
2903280 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Studentship
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
- 批准号:
2340195 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Aspects and Functions of Legal Principles in Civil Law Interpretation
民法解释中法律原则的方面和作用
- 批准号:
23K01192 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Studentship
Various Aspects of the Mechanistic Views of Nature in the Late 19th Century
19世纪末自然机械论的各个方面
- 批准号:
23K00265 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Human, Engineering, and Scientific Aspects of Disease Transmission in Natural and Built Environments
会议:自然和建筑环境中疾病传播的人类、工程和科学方面
- 批准号:
2332366 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
AF: Small: Theoretical Aspects of Repetition-Aware Text Compression and Indexing
AF:小:重复感知文本压缩和索引的理论方面
- 批准号:
2315822 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant