Regression trees for some problems with multi-dimensional data

多维数据的一些问题的回归树

基本信息

  • 批准号:
    1305725
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

The investigator develops regression tree solutions for some important problems with complex and high-dimensional data. Complexity includes missingness, censoring, mixed variable types, and correlated measurements taken at random time points. One specific problem is identification of subgroups for differential treatment effects in comparative trials involving time-varying covariates. A second problem is importance scoring and thresholding of variables and a third is detection of differential test item functioning in testing and evaluation. The main approach relies on adapting and extending the GUIDE decision tree algorithm to these problems. Expected difficulties and challenges include minimizing error rates and computational cost as well as ensuring unbiased selection of the variables used to split the nodes of the trees.The ability to collect and generate greater amounts of data at faster speeds creates new difficulties to data analysis and interpretation. For example, the health industry is looking into using genetic information and repeated observations over time to find personalized treatments for diseases. The proposed research will extend a statistical approach based on decision trees to solve problems such as: (i) identifying subpopulations of patients who benefit more from a one treatment over another, based on repeated observations on health and other outcomes over time, (ii) identifying and ranking genetic and other variables with respect to their importance in prediction of illness and their interactions with treatments, and (iii) identifying test items in testing and evaluation that discriminates against people due to their gender, race, or socio-economic and cultural background. A decision tree model has the unique advantage that it is easy to apply and intuitive to interpret. The latter property is crucially important to understanding and advancing the science.
研究者为复杂高维数据的一些重要问题开发了回归树解决方案。复杂性包括缺失、审查、混合变量类型和在随机时间点进行的相关测量。一个具体的问题是在涉及时变协变量的比较试验中鉴别不同治疗效果的亚组。第二个问题是变量的重要性评分和阈值问题,第三个问题是测试和评估中差异测试项目功能的检测问题。主要的方法依赖于对GUIDE决策树算法进行调整和扩展来解决这些问题。预期的困难和挑战包括最小化错误率和计算成本,以及确保用于分割树节点的变量的无偏选择。以更快的速度收集和生成更多数据的能力给数据分析和解释带来了新的困难。例如,健康行业正在研究利用遗传信息和长期反复观察来找到个性化的疾病治疗方法。建议的研究将扩展基于决策树的统计方法来解决以下问题:(一)根据长期对健康和其他结果的反复观察,确定从一种治疗比另一种治疗获益更多的患者亚群;(二)根据预测疾病的重要性及其与治疗的相互作用,确定遗传变量和其他变量并对其进行排序;(三)确定检测和评估中因性别、种族或社会经济和文化背景而歧视人们的测试项目。决策树模型具有易于应用和直观解释的独特优势。后一种性质对于理解和推进科学至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei-Yin Loh其他文献

Estimating an Endpoint of a Distribution with Resampling Methods
  • DOI:
    10.1214/aos/1176346811
  • 发表时间:
    1984-12
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Wei-Yin Loh
  • 通讯作者:
    Wei-Yin Loh
REGRESSION TREES WITH UNBIASED VARIABLE SELECTION AND INTERACTION DETECTION
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei-Yin Loh
  • 通讯作者:
    Wei-Yin Loh
Classification and Regression Tree Methods
  • DOI:
    10.1002/9780470061572.eqr492
  • 发表时间:
    2008-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei-Yin Loh
  • 通讯作者:
    Wei-Yin Loh

Wei-Yin Loh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei-Yin Loh', 18)}}的其他基金

Tree-Structured Methods for Prediction and Data Visualization
用于预测和数据可视化的树结构方法
  • 批准号:
    0402470
  • 财政年份:
    2004
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Resampling and Other Inference in Statistics
数学科学:统计中的重采样和其他推理
  • 批准号:
    8803271
  • 财政年份:
    1988
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant

相似国自然基金

树木抑制户外空气中细菌作用特异性的研究
  • 批准号:
    30570346
  • 批准年份:
    2005
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目

相似海外基金

Excellence in Research: Developing a Model System for Studying the Determinants of Flower Morphology in Tropical Dioecious Trees
卓越的研究:开发用于研究热带雌雄异株树木花形态决定因素的模型系统
  • 批准号:
    2401525
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Barking up the right trees – A microbial solution for our methane problem
树皮正确 — 解决甲烷问题的微生物解决方案
  • 批准号:
    DE240100338
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Discovery Early Career Researcher Award
Utilising novel Pongamia trees to decarbonise Australia’s beef value-chain
利用新型水黄皮树实现澳大利亚牛肉价值链脱碳
  • 批准号:
    LP220100090
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Linkage Projects
Arboricrop: next generation agriculture using real-time information from trees crops
Arboricrop:利用树木作物实时信息的下一代农业
  • 批准号:
    10087410
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Collaborative R&D
Development of physiological index on the stress tolerance and the analytical method of distribution of riparian trees
河岸树木抗逆生理指标的建立及分布分析方法
  • 批准号:
    23K04040
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Foundations of Anonymous Dynamic Networks
匿名动态网络的基础
  • 批准号:
    23K10985
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Detecting snow under and within trees with satellite lidar for improved climate and weather modelling
使用卫星激光雷达检测树下和树内的积雪,以改进气候和天气建模
  • 批准号:
    2890089
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Studentship
Assessing the principal ecological strategies of trees in African woodlands and their implications for ecosystem dynamics and functionality
评估非洲林地树木的主要生态策略及其对生态系统动态和功能的影响
  • 批准号:
    2894591
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Studentship
NSFDEB-NERC: Gigante: Quantifying and upscaling the causes and drivers of death for giant tropical trees
NSFDEB-NERC:Gigante:量化和升级巨型热带树木死亡的原因和驱动因素
  • 批准号:
    NE/Y003942/1
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Research Grant
SBIR Phase II: Using a novel RNA therapy to immunize trees and vines against deadly bacteria
SBIR II 期:使用新型 RNA 疗法使树木和藤蔓免受致命细菌的侵害
  • 批准号:
    2223139
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了