Detecting snow under and within trees with satellite lidar for improved climate and weather modelling

使用卫星激光雷达检测树下和树内的积雪,以改进气候和天气建模

基本信息

  • 批准号:
    2890089
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

BackgroundSnow is the largest transient feature of the land surface. It provides drinking water to a significant fraction of the population, affects the weather, and controls plant growth and wildfires fire through water availability. Maps of snow extent are produced by a range of satellites. These are used to drive weather and hydrological forecasting and to test climate models; changing snow extent with temperature is a key metric of the accuracy of climate models' sensitivity (Mudryk et al 2020). Currently these maps are generated by passive remote sensing. Due to the mixing of energy from the ground and plants, these tend to underestimate the extent of snow in forested areas and cannot easily detect snow within trees. Snow that is caught in trees can sublime into the atmosphere, whilst snow under trees is shaded from the sun, changing the hydrology and so these processes are important for accurate forecasts (Ly et al 2019).A new generation of lidar (laser ranging) satellites can separate out signals from the ground and canopy (Armston et al 2013). This holds the potential to map snow under trees and to estimate how much is held within trees (Russell et al 2020). These new maps could allow step changes in the accuracy of snow in climate and weather predictions. The snow caught in trees is modelled based on very limited data, so having large-scale maps would allow the first detailed test of the impact of snow in trees on weather and hydrology. Accurate maps of snow under trees would allow large scale testing of weather models, which is currently a large uncertainty in weather and climate forecast models.Experimental planBuilding on work to determine ground and vegetation canopy reflectance from NASA's ICEsat-2 and GEDI satellite lidars (working with the NASA ICESat-2 vegetation product lead), the first step would be to determine whether the satellite lidars can measure ground reflectance accurately enough to predict sub-canopy snow cover. The primary error here is ground finding, and so any novel findings could be used to improve all other lidar data products, including height and biomass. This will be compared against ground cameras and high-resolution satellite images. An accurate method will allow ICESat-2 data to map sub-canopy snow over large areas of the Earth.The canopy reflectance can be investigated to determine whether it can be used to measure the amount of snow held within trees. This is currently an unknown in snow modelling and may be causing large biases in the water balance (Russell et al 2021). Any large-scale observations would help improve forecasts. This can involve fieldwork to snow affected forests (Scandinavia or North America), making use of terrestrial laser scanning and snow mass measurements to monitor snow falling and being caught within trees.Lidar has sparse temporal coverage compared to passive satellites and so ICEsat-2 will not be suitable for testing models at seasonal temporal resolutions. To achieve that, ICESat-2 data can be used to calibrate passive optical and microwave satellites to estimate sub-canopy snow through machine learning techniques, allowing large-scale mapping at high-temporal resolution (monthly to daily).These updated maps can be used to test weather and climate models in snow-affected forests, allowing applications in climate models, hydrological forecasting and wildfire estimation. The choice of which final applications to pursue can be determined by the PhD student, with the support of the supervision team.
背景雪是陆地表面最大的瞬态特征。它为很大一部分人口提供饮用水,影响天气,并通过水的可用性控制植物生长和野火。积雪范围的地图是由一系列卫星制作的。这些被用来驱动天气和水文预报,并测试气候模型;随着温度变化的积雪范围是气候模型灵敏度准确性的关键指标(Mudryk等人,2020年)。目前,这些地图是由被动遥感生成的。由于来自地面和植物的能量混合,这些往往会低估森林地区的积雪程度,并且无法轻易检测到树木中的积雪。被树木捕获的雪可以升华到大气中,而树下的雪则被太阳遮蔽,改变水文,因此这些过程对于准确预报非常重要(Ly等人,2019)。新一代激光雷达(激光测距)卫星可以分离出来自地面和树冠的信号(Armston等人,2013)。这有可能绘制树下的雪,并估计树内有多少雪(Russell et al 2020)。这些新地图可以允许气候和天气预测中雪的准确性发生阶跃变化。树木中的积雪是基于非常有限的数据建模的,因此拥有大比例尺的地图将允许第一次详细测试树木中的积雪对天气和水文的影响。精确的树下积雪地图将允许对天气模型进行大规模测试,这是目前天气和气候预报模型中的一个很大的不确定性。(与NASA ICESat-2植被产品负责人合作),第一步是确定卫星激光雷达是否能够足够准确地测量地面反射率,以预测树冠下的积雪。这里的主要错误是地面发现,因此任何新的发现都可以用于改进所有其他激光雷达数据产品,包括高度和生物量。这将与地面相机和高分辨率卫星图像进行比较。一种精确的方法将使ICESat-2的数据能够绘制地球大面积地区的次冠层积雪图,可以对冠层反射率进行调查,以确定是否可以用它来测量树木内的积雪量。这是目前雪模型中未知的,可能会导致水平衡的大偏差(Russell等人,2021年)。任何大规模的观测都将有助于改善预报。这可能涉及到对受雪影响的森林(斯堪的纳维亚或北美)进行实地考察,利用地面激光扫描和雪量测量来监测降雪和被树木捕获的雪。与被动卫星相比,激光雷达的时间覆盖范围较窄,因此ICEsat-2不适合在季节性时间分辨率下测试模型。为实现这一目标,ICESat-2数据可用于校准无源光学和微波卫星,以通过机器学习技术估计冠层下积雪,从而能够以高时间分辨率(每月到每日)进行大规模测绘,这些更新的地图可用于测试受积雪影响的森林的天气和气候模型,从而能够应用于气候模型、水文预报和野火估计。最终申请的选择可以由博士生在监督团队的支持下决定。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

季节性雪被覆盖对高山植被坡向分异的驱动作用
  • 批准号:
    30870396
  • 批准年份:
    2008
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Study on the insect communities living under the heavy snow cover in Japanese Archipelago
日本列岛大雪覆盖下的昆虫群落研究
  • 批准号:
    23K05885
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Observations and Micromechanical Modeling of the Behavior of Snow/Ice Lenses Under Load in Order to Understand Avalanche Nucleation
为了了解雪崩成核,对雪/冰透镜在负载下的行为进行观察和微机械建模
  • 批准号:
    2227842
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Carbon Emissions under Arctic Snow (CEAS)
北极雪下的碳排放(CEAS)
  • 批准号:
    NE/W003686/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Species diversity of Japanese snow crane flies under global warming: DNA taxonomy and habitat model
全球变暖下日本雪鹤的物种多样性:DNA分类学和栖息地模型
  • 批准号:
    21F21094
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
SitS NSF-UKRI: Collaborative Research: Sensors UNder snow Seasonal Processes in the evolution of ARctic Soils (SUN SPEARS)
SitS NSF-UKRI:合作研究:雪下传感器北极土壤演变的季节性过程(SUN SPEARS)
  • 批准号:
    1935689
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SitS NSF-UKRI: Collaborative Research: Sensors UNder snow Seasonal Processes in the Evolution of ARctic Soils (SUN SPEARS)
SitS NSF-UKRI:合作研究:雪下传感器北极土壤演化的季节性过程(SUN SPEARS)
  • 批准号:
    NE/T010568/1
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grant
SitS NSF-UKRI: Collaborative Research: Sensors UNder snow Seasonal Processes in the evolution of ARctic Soils (SUN SPEARS)
SitS NSF-UKRI:合作研究:雪下传感器北极土壤演变的季节性过程(SUN SPEARS)
  • 批准号:
    1935651
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SitS NSF-UKRI: Collaborative Research: Sensors UNder snow Seasonal Processes in the Evolution of ARctic Soils (SUN SPEARS)
SitS NSF-UKRI:合作研究:雪下传感器北极土壤演化的季节性过程(SUN SPEARS)
  • 批准号:
    NE/T010967/1
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grant
SitS NSF-UKRI: Collaborative Research: Sensors UNder snow Seasonal Processes in the evolution of ARctic Soils (SUN SPEARS)
SitS NSF-UKRI:合作研究:雪下传感器北极土壤演变的季节性过程(SUN SPEARS)
  • 批准号:
    2015329
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Preservation of fruit tree branch under various mechanical stress including snow load
果树枝在包括雪荷载在内的各种机械应力下的保存
  • 批准号:
    18KT0058
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了