CRCNS: Computational Approaches to Uncover Neural Representation of Population Codes in Rodent Hippocampal-Cortical Circuits

CRCNS:揭示啮齿动物海马皮质回路中群体代码神经表征的计算方法

基本信息

  • 批准号:
    1307645
  • 负责人:
  • 金额:
    $ 97.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

Spatial navigation and episodic memory are important for daily activity and survival in rodents and primates. Episodic memory consists of collections of past experiences that occurred at a particular time and space, expressed in the form of sequences of temporal or spatial events. Spatial (topographical or topological) representation of the environment is pivotal for navigation. The hippocampus plays a significant role in both spatial representations and episodic memory. However, it remains unclear how the spikes of hippocampal neurons might be used by downstream structures in order to reconstruct the spatial environment without the a priori information of the place receptive fields. Little is known how the hippocampal neuronal representation might be affected by experimental manipulation. Furthermore, cortico-hippocampal interplay and communications are critical for memory consolidation, but many questions about their temporal coordination during sleep remains unresolved. This project proposes a collaborative proposal for studying the neural representation of population codes in rodent hippocampal-cortical circuits. The investigators and collaborators at MGH, MIT and Boston University will integrate innovative computational and experimental approaches to explore the neural codes during various spatial navigation and spatial/temporal memory tasks as well as during post-behavior sleep---as sleep is critical to hippocampal-dependent memory consolidation. Notably, due to the lack of measured behavior, it remains a great challenge to analyze or interpret sleep-associated hippocampal or cortical spike data. The important questions central to this project are: how do hippocampal (or hippocampal-cortical) neuronal representations vary with respect to species (rat vs. mouse), animal (healthy vs. diseased), experience (novel vs. familiar), environment (one vs. two-dimensional), behavioral state (awake vs. sleep), and task (active vs. passive navigation; spatial working memory vs. temporal sequence memory). The investigators will simultaneously record ensemble spike activity from two or multiple areas of the rodent brain (hippocampus, primary visual cortex, prefrontal cortex, and retrosplenial cortex) under different experimental conditions, and will decipher the population codes using a coherent statistical framework. In light of Bayesian inference (variational Bayes or nonparametric Bayes), innovative unsupervised or semi-supervised learning approaches are developed for mining and visualizing sparse (in terms of both sample size and low firing rate) neuronal ensemble spike data. The outcome of this investigation will improve the understanding of neural mechanisms of hippocampal (or hippocampal-cortical) population coding and its implications in learning, sleep and memory. The derived findings will shed light on the links between the variability of neural responses and the animal behavior (or other external factors), and will provide further insight into memory dysfunction (such as in Alzheimer's disease). Furthermore, this project has broader impacts in developing efficient algorithms to decipher neuronal population spike activity during behavior or sleep, as well as in discovering invariant topological representation of population codes in other cortical areas. In addition to the scientific significance, this proposal bears an educational component for training researchers on advanced quantitative skills in ensemble spike data analysis as well as for disseminating scientific resources (by sharing data and software) to a broad neuroscience community.
空间导航和情景记忆对于啮齿动物和灵长类动物的日常活动和生存很重要。情景记忆由在特定时间和空间发生的过去经历的集合组成,以时间或空间事件序列的形式表达。环境的空间(地形或拓扑)表示对于导航至关重要。海马体在空间表征和情景记忆中发挥着重要作用。然而,目前尚不清楚下游结构如何使用海马神经元的尖峰来在没有位置感受野的先验信息的情况下重建空间环境。目前尚不清楚海马神经元表征如何受到实验操作的影响。此外,皮质-海马的相互作用和通信对于记忆巩固至关重要,但关于睡眠期间它们的时间协调的许多问题仍未解决。该项目提出了一项研究啮齿动物海马皮质回路中群体代码的神经表征的合作提案。麻省总医院、麻省理工学院和波士顿大学的研究人员和合作者将整合创新的计算和实验方法,探索各种空间导航和空间/时间记忆任务以及行为后睡眠期间的神经编码——因为睡眠对于海马依赖性记忆巩固至关重要。值得注意的是,由于缺乏可测量的行为,分析或解释与睡眠相关的海马或皮质尖峰数据仍然是一个巨大的挑战。该项目的核心问题是:海马(或海马皮质)神经元表征如何随物种(大鼠与小鼠)、动物(健康与患病)、经验(新奇与熟悉)、环境(一维与二维)、行为状态(清醒与睡眠)和任务(主动与被动导航;空间工作记忆与时间序列记忆)而变化。研究人员将在不同的实验条件下同时记录啮齿动物大脑两个或多个区域(海马体、初级视觉皮层、前额叶皮层和压后皮层)的整体尖峰活动,并使用连贯的统计框架破译群体密码。根据贝叶斯推理(变分贝叶斯或非参数贝叶斯),开发了创新的无监督或半监督学习方法,用于挖掘和可视化稀疏(在样本大小和低放电率方面)神经元集合尖峰数据。这项研究的结果将增进对海马(或海马皮质)群体编码的神经机制及其对学习、睡眠和记忆的影响的理解。得出的发现将揭示神经反应的变异性与动物行为(或其他外部因素)之间的联系,并将进一步深入了解记忆功能障碍(例如阿尔茨海默病)。此外,该项目在开发有效算法来破译行为或睡眠期间神经元群体尖峰活动以及发现其他皮质区域群体代码的不变拓扑表示方面具有更广泛的影响。除了科学意义外,该提案还具有教育意义,可以培训研究人员在集合尖峰数据分析方面的高级定量技能,以及向广泛的神经科学界传播科学资源(通过共享数据和软件)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhe Chen其他文献

Fault Current Suppression for the Fault Ride-Through of Triple-Active-Bridge Converters
三有源桥变换器故障穿越的故障电流抑制
Optimal power dispatch strategy of onshore wind farms considering environmental impact
考虑环境影响的陆上风电场优化电力调度策略
High-rate performance and super long-cycle stability of Na3V2(PO4)3 cathode material coated by diatomic doped carbon
双原子掺杂碳包覆Na3V2(PO4)3正极材料的高倍率性能和超长循环稳定性
  • DOI:
    10.1007/s12598-022-02204-w
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Jia Kang;Ling Zhu;Fei-Yang Teng;Si-Qi Wang;Yong-Gang Huang;Yan-Hong Xiang;Zhe Chen;Xian-Wen Wu
  • 通讯作者:
    Xian-Wen Wu
Photon coupling-induced spectrum envelope modulation in the coupled resonators from Vernier effect to harmonic Vernier effect
耦合谐振器中的光子耦合引起的频谱包络调制从游标效应到谐波游标效应
  • DOI:
    10.1515/nanoph-2021-0596
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Lei Chen;Junhua Huang;Gui-Shi Liu;Feifan Huang;Huajian Zheng;Yaofei Chen;Yunhan Luo;Zhe Chen
  • 通讯作者:
    Zhe Chen
Effect of different pre-existing dislocation densities on the microstructure evolution of W-0.5ZrC alloy during in-situ He+ irradiation
原位He辐照过程中不同预存位错密度对W-0.5ZrC合金显微组织演化的影响
  • DOI:
    10.1016/j.jnucmat.2022.154206
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Jinchi Huang;Ziqi Cao;Zhe Chen;Yipeng Li;Yifan Ding;Xinyi Liu;Zhehui Zhou;Changsong Liu;GuangRan
  • 通讯作者:
    GuangRan

Zhe Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhe Chen', 18)}}的其他基金

2021 CRCNS Principal Investigators Meeting
2021年CRCNS首席研究员会议
  • 批准号:
    2040622
  • 财政年份:
    2021
  • 资助金额:
    $ 97.41万
  • 项目类别:
    Standard Grant
NCS-FO: Closed-loop neuromodulation for chronic pain
NCS-FO:慢性疼痛的闭环神经调节
  • 批准号:
    1835000
  • 财政年份:
    2019
  • 资助金额:
    $ 97.41万
  • 项目类别:
    Standard Grant
CRCNS: Computational Approaches to Uncover Neural Representation of Population Codes in Rodent Hippocampal-Cortical Circuits
CRCNS:揭示啮齿动物海马皮质回路中群体代码神经表征的计算方法
  • 批准号:
    1443032
  • 财政年份:
    2014
  • 资助金额:
    $ 97.41万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 97.41万
  • 项目类别:
    EU-Funded
Conference: Computational and Psycholinguistic Approaches to Second Language Acquisition
会议:第二语言习得的计算和心理语言学方法
  • 批准号:
    2336394
  • 财政年份:
    2024
  • 资助金额:
    $ 97.41万
  • 项目类别:
    Standard Grant
Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
  • 批准号:
    2311297
  • 财政年份:
    2023
  • 资助金额:
    $ 97.41万
  • 项目类别:
    Standard Grant
Development of Low Power Consumption Multiferroic Memory using Experimental and Computational Approaches
使用实验和计算方法开发低功耗多铁存储器
  • 批准号:
    23KJ0919
  • 财政年份:
    2023
  • 资助金额:
    $ 97.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Integration of Immunologic Phenotyping with Computational Approaches to Predict Clinical Trajectory in Septic Patients
免疫表型分析与计算方法相结合来预测脓毒症患者的临床轨迹
  • 批准号:
    10708534
  • 财政年份:
    2023
  • 资助金额:
    $ 97.41万
  • 项目类别:
Bottom-up and top-down computational modeling approaches to study CMV retinitis
研究 CMV 视网膜炎的自下而上和自上而下的计算模型方法
  • 批准号:
    10748709
  • 财政年份:
    2023
  • 资助金额:
    $ 97.41万
  • 项目类别:
Teachers' decision-making process: Computational and neuroimaging approaches
教师的决策过程:计算和神经影像方法
  • 批准号:
    23KJ1861
  • 财政年份:
    2023
  • 资助金额:
    $ 97.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSFDEB-NERC: Integrating computational, phenotypic, and population-genomic approaches to reveal processes of cryptic speciation and gene flow in Madag
NSFDEB-NERC:整合计算、表型和群体基因组方法来揭示马达格神秘物种形成和基因流的过程
  • 批准号:
    NE/X002071/1
  • 财政年份:
    2023
  • 资助金额:
    $ 97.41万
  • 项目类别:
    Research Grant
Using advanced genomic and computational approaches to discover and characterize novel genetic variants in neurodevelopmental disorders.
使用先进的基因组和计算方法来发现和表征神经发育障碍中的新遗传变异。
  • 批准号:
    491213
  • 财政年份:
    2023
  • 资助金额:
    $ 97.41万
  • 项目类别:
    Fellowship Programs
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
  • 批准号:
    10585301
  • 财政年份:
    2023
  • 资助金额:
    $ 97.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了